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Executive summary 
This project was funded under the Transport Canada Quiet Vessel Initiative and spanned two fiscal years (Fall 

2022 – March of 2024).  The purpose of this project is to provide decision support to reduce the underwater 

radiated noise (URN) of a small marine craft. The project aims to develop a methodology to analyze the URN of a 

class of small marine craft in order to generate a transfer function (TF) that relates on-board measures of 

structure-borne noise to the resulting URN spectrum.  This class URN TF is the core of a CBM sensor package for 

small marine craft to provide information to enable a vessel operator to monitor their vessel’s URN, and, when 

possible, take actions to reduce the URN emissions.  The proposed approach is known as condition-based 

monitoring (CBM), in which measures of a vessel’s state or condition are used to monitor its performance and 

predict when maintenance is needed.  Specifically, the goal of this project was to design a cost-effective 

instrumentation package and class URN TF to inform a vessel operator of the vessel’s current URN levels based 

only on measures that are available onboard the vessel.  This project focused on Cape Islander fishing vessels due 

to their popularity and relative structural and mechanical simplicity.   

Given these requirements, we identified options for simple and inexpensive components to make up the CBM 

instrumentation package. The resulting system consisted primarily of a Raspberry Pi 4 Model B as the computer, a 

4-20 mA accelerometer, a Pi-SPi-8AI Raspberry Pi Analog Input Interface board as the DAQ, and a Honeywell Hall-

effect Sensor to measure RPM.  In total, the cost of this instrumentation package is under $500 CAD.  This cost is 

based on ordering only enough components for one package, thus lacking any efficiencies of scale. A prototype 

CBM instrumentation package with user interface was developed and field tested.   

The use of such components for a CBM system on small marine craft to predict URN in-situ is not well established.  

As a result, a trial plan was developed to record data from fishing vessels using both the prototype 

instrumentation package as well as the more traditional instrumentation package used in the previous project’s 

trials to be able to compare the performance using data collected under each system.  Trials were completed 

using the CBM system using 4 small marine craft (Cape Islanders) in September-October 2023. The trial data was 

processed to evaluate and refine the CBM system.  

This project shows that a small number of sensors can predict the URN for a Cape Islander with acceptable 

performance (~ 5.1 dB error).  The minimal sensor package comprised only two sensors: one accelerometer 

located on the hull above the propeller providing the RMS velocity for vibration level between 10 and 100 Hz, and 

a tachometer measuring the shaft RPM.  The URN predictor also required the current season (calculated from the 

date), the year the vessel was built, and the engine horsepower as input.  

The inability to apply the model learned on 2020/2021 records from a previous project to the 2023 trials indicates 

that data used to train the model must be obtained using consistent measurement methods.  The use of data 

record separation techniques other than by general randomization for training and testing was shown to increase 

the error in the predicted URN for the Cape Islander class.  The sensitivity of the data separation approach 

suggests that there is a lot of variation within the class of Cape Islanders and that a large sampling of Cape 

Islanders would need to be included in the training data set before the model can generalize to other members of 

the Cape Islander class without including their URN records in the model training. 

 



 

 
TR-24-18 
22 March 2024   

Contents 

1. Introduction ............................................................................................................................ 1 

2. CBM System Overview ........................................................................................................... 2 

3. Trial Method and Data Collection ....................................................................................... 3 

4. Class Underwater Radiated Noise Transfer Function ...................................................... 9 

4.1 URN Transfer Function Development Methodology .......................................................... 9 

4.2 URN Transfer Function Model Design ................................................................................... 9 

4.3 URN Transfer Function Training Approach ........................................................................ 10 

4.4 URN Transfer Function Performance .................................................................................. 11 

4.4.1 Cape Islander Dataset ...................................................................................................................................................... 11 

4.4.2 Correlation Analysis .......................................................................................................................................................... 11 

4.4.3 Results ................................................................................................................................................................................. 12 

4.4.4 Sensitivity Analysis ............................................................................................................................................................ 13 

4.5 Day of Year Sensitivity ............................................................................................................ 14 

4.6 URN Transfer Function Feature Set Recommendations ................................................. 15 

4.6.1 Analysis towards a Reduced Feature Set ..................................................................................................................... 15 

4.6.2 Recommendations ........................................................................................................................................................... 16 

5. Instrumentation Package ................................................................................................... 17 

5.1 Data Acquisition ...................................................................................................................... 17 

5.1.1 Accelerometer(s) ............................................................................................................................................................... 17 

5.1.2 Vessel Speed ...................................................................................................................................................................... 17 

5.1.3 Engine RPM ......................................................................................................................................................................... 18 

5.2 Data Processing ....................................................................................................................... 18 

5.2.1 Single Board Computer ................................................................................................................................................... 18 

5.2.2 Vessel Data Input ............................................................................................................................................................... 18 

5.3 Instrumentation Package Options ...................................................................................... 19 

5.4 Prototype CBM System .......................................................................................................... 20 

5.4.1 Prototype CBM System Software ................................................................................................................................... 23 

5.5 Trials with Prototype CBM System ...................................................................................... 27 

6. URN Transfer Function Results .......................................................................................... 28 

6.1 Results Using 2020/2021 Data for Training ........................................................................ 28 

6.2 Results Using 2023 Data for Training .................................................................................. 30 

6.3 Alternate Training Approaches............................................................................................. 31 

7. Conclusions ........................................................................................................................... 33 



 

 
TR-24-18 
22 March 2024   

8. Performance Indicators ...................................................................................................... 34 

9. References ............................................................................................................................. 35 

Appendix A Draft CBM System User Guide 

 

List of Figures 
Figure 1-1 Example of the class of small marine craft known as Cape Islanders ................................................................ 1 

Figure 2-1 CBM System Overview ................................................................................................................................................... 2 

Figure 3-1 Trial Site Location .......................................................................................................................................................... 4 

Figure 3-2 Arrangement for URN measurements. ...................................................................................................................... 5 

Figure 3-3 An example of artifially fouling the cages by means of a metal plate. ................................................................ 7 

Figure 3-4 Circuit for recording URN measurements ................................................................................................................. 7 

Figure 3-5 Pressure sensor mounted on the hull near the propellor. .................................................................................... 8 

Figure 4-1 URN TF Training Approach ........................................................................................................................................ 10 

Figure 4-2 Correlation analysis results with intense blue or intense red indicating strongly correlated parameters.  

The strongest correlations are indicated by an asterisk (∗). .................................................................................................. 12 

Figure 4-3 URN TF prediction error for each of the five folds, showing consistency across frequency bins. ............... 13 

Figure 4-4 Underwater ambient noise levels during Cape Islander Trials between 2020 and 2021.  Colours indicate 

records taken before July (pink), between August and early October (cyan), and after mid-October (blue). ............ 15 

Figure 5-1  CBM C-1 Prototype Internals. Left: Raspberry Pi 4B. Right: Pi-SPi-8AI+ Raspberry Pi Analog Input (4 - 20 

mA) Interface. ................................................................................................................................................................................... 20 

Figure 5-2  Assembled CBM C-1 Prototype ................................................................................................................................ 21 

Figure 5-3  CBM system in-situ on a fishing boat trial powered from a portable power pack. ....................................... 21 

Figure 5-4  Two accelerometers mounted on hull above fishing boat propeller. Mounted Left: CBM 4-20 mA 

Wilcoxon Accelerometer. Mounted Right: IEPE reference accelerometer. ......................................................................... 22 

Figure 5-5  Hall Effect Tachometer mounted to hull pointed towards propeller shaft with tachometer triggering 

magnet taped to shaft. ................................................................................................................................................................... 22 

Figure 5-6  Close up of Hall Effect Tachometer and triggering magnet. .............................................................................. 23 

Figure 5-7  Screenshot GUI webapp accessed via a smartphone web browser plotting a real-time stream of voltage 

data read from the Pi-SPi-8AI+. Input A5 is the output read from the hall effect tachometer. ....................................... 24 

Figure 5-8  Webapp GUI displaying a plot of the 1000-point data buffer of tachometer voltage data along with the 

peaks found via the peak finding algorithm used to determine average shaft RPM over the duration of the data 

buffer. Timestamps are logged in UTC and were displayed as such in this plot. .............................................................. 25 

Figure 5-9  Webapp GUI plotting real-time stream of velocity RMS data measured from the 4-20 mA Wilcoxon 

accelerometer. ................................................................................................................................................................................. 26 

Figure 5-10  Boat parameter input interface in the webapp GUI. ......................................................................................... 26 

Figure 5-11  Predicted URN spectra plot by the webapp GUI as determined by processed tachometer and 

accelerometer inputs and boat specific parameters. ............................................................................................................. 27 

Figure 5-12  Photo of the support vessel with hydrophone system deployed as the boat under test passes during a 

sea trial. ............................................................................................................................................................................................. 28 

Figure 6-1 All ambient recordings in 2020/2021 (left) and 2023 (right). ............................................................................... 29 

Figure 6-2 Just Once (clean no cage, not freshly coated) from 2020/2021 (left) and 2023 (right). ................................. 29 

Figure 6-3 This Is It (clean no cage, not freshly coated) from 2020/2021 (left) and 2023 (right). .................................... 29 

Figure 6-4 Average Error on Training Set by Frequency Bin ................................................................................................... 31 

Figure 6-5 Testing results for model trained on No-Cage data and tested on Cage data (left), and for the model 

trained on Cage data and tested on no-cage data (right). ..................................................................................................... 32 



 

 
TR-24-18 
22 March 2024   

Figure 6-6 Testing Performance results by vessel. Bay Bliss (top left), Brooklynn and Boys (top right), Just Once 

(bottom left), This Is It (bottom right). ........................................................................................................................................ 33 

 

List of Tables 
Table 3-1 General boat information .............................................................................................................................................. 4 

Table 3-2 Order of events on each trial day ................................................................................................................................. 5 

Table 3-3 Summary of trials (boat hull configuration and performed runs) ........................................................................ 6 

Table 4-1 Prediction error of Cape Islander URN TF showing consistency among the folds. Good prediction 

accuracy and precision was achieved, given 5 dB measurement uncertainty. ................................................................. 12 

Table 5-1 SBC and Accelerometer Options ............................................................................................................................... 19 

Table 5-2 RPM and Additional Sensor Options ......................................................................................................................... 20 

Table 6-1 Test performance of URN TF trained on 2023 records .......................................................................................... 30 

Table 7-1 Performance Indicators ............................................................................................................................................... 34 

 

 

 

List of Abbreviations 
ADC Analog to Digital Converter 

CBM Condition-Based Monitoring 

DAQ Data Acquisition System 

GIT Graphite Innovation and Technologies 

GPS Global Positioning System 

GUI Graphical User Interface 

HP Horsepower 

IEPE Integrated Electronics Piezo-Electric 

LAN Local Area Network 

LOA Length Over All 

LR Lloyd’s Register 

ML Machine Learning 

NI National Instruments 

NSTM Naval Ships’ Technical Manual (Metric for fouling on hull) 

PLC Programmable Logic Controller 

RMS Root Mean Square 

RPM Rotations Per Minute 

SBC Single-Board Computer 

SOG Speed Over Ground 

STW Speed Through Water 

TC Transport Canada 

TF Transfer Function 

URN Underwater Radiated Noise 

 



 

TR-24-18  Page 1 
22 March 2024   

1. Introduction 

The purpose of this project is to provide decision support to reduce the underwater radiated noise 

(URN) of a small marine craft. The project aims to develop a methodology to analyze the URN of a class 

of small marine craft in order to generate a transfer function (TF) that relates on-board measures of 

structure-borne noise to the resulting URN spectrum.  This class URN TF will be the core of a CBM 

sensor package for small marine craft to provide information to enable a vessel operator to monitor 

their vessel’s URN, and, when possible, take actions to reduce the URN emissions.  The proposed 

approach is known as condition-based monitoring (CBM), in which measures of a vessel’s state or 

condition are used to monitor its performance and predict when maintenance is needed.  Specifically, 

the goal of this this project is to design a cost-effective instrumentation package and class URN TF to 

inform a vessel operator of the vessel’s current URN levels based only on measures that are available 

onboard the vessel.  

The priority of this project is placed on small marine craft – specifically fishing vessels known as Cape 

Islanders (shown in Figure 1-1) – for two reasons.  First, there are over 3500 Cape Islanders in Nova 

Scotia so insight of this type can have a wide impact for vessels that do not otherwise have data related 

to their URN emissions.  Second, Cape Islanders have a simple structure with minimal machinery, which 

makes them an effective test case to demonstrate the potential for our proposed CBM approach.   

 

Figure 1-1 Example of the class of small marine craft known as Cape Islanders  

Cape Islanders are used for various activities in New Brunswick, Nova Scotia, and Prince Edward Island 

including lobster and halibut fishing, tagging sea turtles, deep sea fishing tourism, and as charters for 

research activities. The Cape Island style of boat has been built since the 1970s so many have 

undergone refits to broaden or lengthen their hulls.  They are typically fibreglass with wooden frames, 

10-13 m long, 4-6 m beam, and have a draft of approximately 1.5 m. Most of the operators we have 

spoken with claim a maximum speed around 10 knots, typically using a 4-stroke, 200-300 HP diesel 

engine.  Propellers are not consistent across Cape Islanders, but the most common propellers available 

are 4-bladed.  

As with all vessels, URN produced by Cape Islanders comprises three categories:  structure-borne noise, 

flow or hull hydrodynamic noise, and propeller noise. Structure-borne noise arises from mechanical 

systems whose vibrations excite the structure of the boat.  Those vibrations are transmitted through the 

hull into the water.  In general, travelling at faster speeds requires higher engine RPM, which produces 
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more intense vibration, and louder sound in the water.  For small marine craft, the diesel engine is the 

only mechanical system onboard that is in operation while the vessel is underway.   Flow noise arises 

from the sound of the water moving along the hull.  Faster speeds and rougher surfaces result in more 

flow noise.  For small marine craft, fouling on the hull can cause some hull noise, but this type of noise is 

much quieter than the other two categories.  Propeller cavitation noise is a significant feature in a small 

marine craft’s URN signature.  At low speeds, cavitation is minimal and structure-borne noise 

dominates the vessel’s URN.  As the speed increases, cavitation dominates the URN, especially in the 

mid to high frequencies. For the Cape Islanders we worked with, their propellers are not ideally sized for 

their operations, so they operate in the cavitation dominated region when underway.   

This project was funded the Transport Canada Quiet Vessel Initiative and builds on prior work 

undertaken by LR and GIT on a separate project.  The work spanned two fiscal years (Fall 2022 – March 

2024).  

After an overview of the proposed CBM system, the work to develop a URN TF that applies to the Cape 

Islander class is detailed.  This work defines the minimum requirements for the instrumentation 

package for the CBM system. The trial plan is described for conducting trials in September-October 

2023.  Next the instrumentation package for the prototype CBM system is described and the assessment 

of the URN TF for the Cape Islander class of vessels given before finally concluding with 

recommendations.    

2. CBM System Overview 

The proposed CBM system comprises both software and hardware components as shown in Figure 2-1.  

 

Figure 2-1 CBM System Overview 

At the core of the CBM software is a class URN TF which is discussed in Section 4. In broad strokes, it is 

trained (i.e., the parameters of the TF are determined) offline using data from a small number of 

representative class members, then used in-situ to calculate the URN decidecade spectrum based on 

current sensor measurements.   

On the hardware side, the components can be divided into three groups: the sensors, the data 

acquisition and processing system (in this case a single-board computer (SBC)), and a web access point 

such as a phone or laptop through which the operator can view and interact with the CBM system. The 

instrumentation package (i.e., sensors, data acquisition, SBC) is described in Section 5.   
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SBCs with ethernet/Wi-Fi connectivity are capable of hosting web applications accessible via Local Area 

Network (LAN), that could serve as a user interface for vessel parameter input, and sensor measurement 

and URN prediction display. Such web applications would be accessible through any device connected 

to the SBCs LAN – such as a laptop connected to the same router as the SBC via ethernet, or a smart 

phone connected directly to a Wi-Fi Network transmitted by the SBC itself. 

The above describes the minimum viable CBM system for a small vessel interested in their URN 

signature. Including additional sensors may improve an operator’s understanding of their vessel’s 

condition.  For example, if the vessel speed is recorded using GPS, the operator can be alerted if there is 

an unexpected change in the relationship between speed and RPM (e.g., if the RPM required to achieve 

a particular speed is persistently larger than normal without adverse weather conditions, this could 

imply that engine maintenance is required. Such extensions to the sensor package are not required to 

achieve the primary goal but could be considered if they are not too costly.  

3. Trial Method and Data Collection 

Trials were conducted to collect data with the prototype CBM system and measure the URN of fishing 

vessels underway in September and October 2023.  Four boats were selected – three from the previous 

project and one vessel not part of the previous project.  The particulars of the four boats can be found in 

Table 3-1. 

The trials were performed near the fishers’ home port (McGrath’s Cove) for convenience.  The trial site 

location (44º 27.2’ N, 63º 55.4’ W) consisted of a flat sandy bottom with a depth of approximately 50 m 

(Figure 3-1). Two vessels were in use on each trial day – one is the vessel under test (having its URN 

recorded in different operating states), and the other is a support vessel serving as a platform from 

which to put two hydrophones into the water column.  The arrangement of the boats and the 

hydrophones are depicted in Figure 3-2. The boats switched roles during the day once the trial on the 

first boat was completed so that both vessels are tested that day.  The order of events on each trial day 

is listed in Table 3-2. The boat hulls were cleaned prior to the trials to remove fouling. 

For efficiency, the trials were carried out to record the necessary data for this project as well as for 

another TC QVI project on the topic of URN from propeller cages (QUANTIFYING UNDERWATER 

RADIATED NOISE (URN) EFFECTS OF PROPELLER CAGES).  Each vessel thus underwent three days of 

tests: one without a cage, one with the cage, and one with a fouled cage.  In total, the trial consists of six 

measurement days and four vessels.  A list of the trials conducted is given in Table 3-3. 

Fouling of the propellor cages was accomplished by blocking a section of the cage to reduce flow 

through a section of the cage. A rectangular section of sheet metal was attached to both sides of the 

cage towards the leading edge of the cage and at approximately the same elevation as the shaft line. 

Figure 3-3 shows an example of the attached fouling.  It should be noted that the fishers reported that 

the cages do not typically foul by growth of barnacles and other marine life, but rather fouling of the 

cages occurs when seaweed or other material becomes entangled in the cage.  The fouling applied to 

the cages for the trial was an attempt to mimic the fouling experienced by the fishers. 
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Table 3-1 General boat information 

Boat Year 

Built 

Displacement 

(short tons) 

Draft 

(ft) 

LOA (ft) Beam 

(ft) 

Engine HP Gear box 

reduction 

Brooklyn 

and Boys 

2001 6.1 3.3 34 12 Ford 

Lehman 

Senator 

165 2:1 

Bay Bliss 1993 11.5* 4.0 35.0 13 471 

Detroit 

Diesel 

160 2.45:1  

Just Once 1985 11.5* 3.5 37.0 16 Caterpillar 

3208 YR 

1996 

210 2.5 

This Is It 1982 14.2 3.5 34.1 18 Caterpillar 

C7 

251 2.5:1 Twin 

Disk 

* Estimated 

 

 

Figure 3-1 Trial Site Location 
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Figure 3-2 Arrangement for URN measurements. 

 

Table 3-2 Order of events on each trial day 

Order Event 

1 Arrive at wharf 

2 Load CBM and PSARAS equipment onto boats (test and support) 

3 Install CBM and PSARAS equipment on boats 

4 Transit to test site, anchor support boat, test boat moves off ~100 m 

5 Measure Ambient 

6 Static Runs 

7 Dynamic Runs 

8 Measure Ambient 

9 Uninstall equipment from each boat,  

10 Return to wharf (if wave condition is too high for safe transfer at test site) 

11 Transfer equipment between test and support boats 

12 Install equipment on boats 

13 Transit to test site, anchor support boat, test boat moves off ~100 m 

14 Measure Ambient 

15 Static Runs 

16 Dynamic Runs 

17 Measure Ambient 

TEST 

BOAT 

~50 m 

15 m 

40 m 

Hydrophone 

dCPA ~100 m 

STANDBY 

BOAT 

Hydrophone 
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Order Event 

18 Transit back to wharf 

19 Uninstall, pack up equipment 

20 Depart wharf 

 

Table 3-3 Summary of trials (boat hull configuration and performed runs) 

Boat Date 
Trial 

number 
Cage Static Runs (RPM) 

Dynamic 

Runs (knots) 

Just Once 9/13/2023 HS3020 No 
750, 1000, 1200, 1400, 

1600 
4, 6, 8, 9 

Just Once 9/21/2023 HS3022 Yes 
750, 1000, 1200, 1400, 

1600 
4, 6, 8, 9 

Just Once 9/25/2023 HS3025 Fouled 
750, 1000, 1200, 1400, 

1600 
4, 6, 7, 8 

This Is It 9/13/2023 HS3021 No 
850, 1050, 1250, 1500, 

1750 
4, 6, 8, 9 

This Is It 9/21/2023 HS3023 Yes 
850, 1050, 1250, 1500, 

1750 
4, 6, 8, 9 

This Is It 9/25/2023 HS3026 Fouled 
850, 1050, 1250, 1500, 

1750 
4, 6, 7, 8 

Bay Bliss 10/12/2023 HS3028 No 600, 700, 1000, 1200, 1600 4, 6, 8, 9 

Bay Bliss 10/17/2023 HS3029 Yes 
600, 1000, 1200, 1600, 

2000 
4, 6, 8, 9 

Bay Bliss 10/19/2023 HS3032 Fouled 
600, 1000, 1200, 1600, 

2000 
4, 6, 8, 9 

Brooklyn And 
Boys 

10/12/2023 HS3027 No 
700, 1000, 1200, 1600, 

2000 
4.5, 6, 8, 9 

Brooklyn And 
Boys 

10/17/2023 HS3030 Yes 
750, 1000, 1200, 1600, 

2000 
4, 6, 8, 9 

Brooklyn And 
Boys 

10/19/2023 HS3031 Fouled 
750, 1000, 1200, 1600, 

2000 
4, 6, 8, 9 
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Figure 3-3 An example of artifially fouling the cages by means of a metal plate. 

Each trial consisted of a number of measurements for a given boat configuration consisting of ambient 

measurements, static runs, and dynamic runs. Ambient measurements comprise both vessels shutting 

off their engines (and any other vibratory equipment) such that the background noise at the site can be 

recorded for 30 seconds. Static measurements comprise the vessel under test operating with the 

propeller out of gear at 4 or 5 different engine RPM setpoints.  Both vessels remain approximately 

stationary during the static measurements except for drifting due to any wind, waves, tides or current. 

For dynamic measurements, the boats travel a straight line passing the hydrophones (support boat) at 

a nominally constant speed. Figure 3-4 shows the schematic for the dynamic URN tests. Dynamic 

measurements are made at 4 or 5 different speeds, with two runs completed at each speed on 

reciprocal headings.   

  

Figure 3-4 Circuit for recording URN measurements 

The equipment used in the trials for the CBM project are: 

- PSARAS (Portable Ship Ranging Analysis System) to record URN. 

o Sensors: 1 GPS receiver on the support boat, 2 GPS receivers on the boat under test, 1 radio 

antenna per boat, 2 hydrophones. 

o Hardware and software to enable tracking the position of the boat under test and recording 

the corresponding URN.  
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- Martec IR Tachometer and IEPE Accelerometers, laptop, and NI DAQ to provide comparison for CBM 

Prototype Instrumentation Package. 

- CBM Prototype Instrumentation Package, as described in Section 5.  

In addition to the URN, the following variables were observed during the trials: 

- Date, time. 

- Engine characteristics: engine HP, number of strokes, whether turbocharged, gear ratio. 

- Vessel characteristics: beam, length overall, draft, dry weight (tons), year built. 

- Weather (estimated by fisher / hindcast): wind speed, temperature, wave height. 

- Vessel state: number of passengers, cage presence/fouling, approximate cleanliness state (recently 

scraped, newly coated, fouled, etc.). 

- Run measures: Engine RPM, vibration on the hull at a position over the propeller, vibration at the 

engine foundation. 

- For the propellor cage project, an IEPE pressure sensor (PCB model 113B28 or 113BB26) was 

installed on the hull near the propeller for each trial.  The pressure sensor was fitted in a mount that 

was fixed to the hull using the outer bolt used to secure the cage, which put the sensor just 

outboard and slightly aft of the propellor (Figure 3-5 Pressure sensor mounted on the hull near the 

propellor.Figure 3-5).  The position of the sensor location was recorded for each boat. The pressure 

data was recorded using the NI DAQ device that was also used to record the hull vibration. 

(  

Figure 3-5 Pressure sensor mounted on the hull near the propellor. 
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4. Class Underwater Radiated Noise Transfer Function 

The purpose of a URN transfer function (TF) is to relate measurements available on-board a vessel to 

the underwater noise the vessel generates.  This includes propeller cavitation noise, machinery noise, 

and flow noise (ordered according to their level of contribution from high to low in general). Typically, 

the URN TF must be studied for each specific vessel’s configuration as variations in equipment, loading 

and even the individual operator can have significant impacts on a vessel’s URN signature.  However, 

small marine craft such as those in Canada’s inshore fishing fleet, have simple designs that are expected 

to result in consistency between individual vessels.  As a result, we propose to perform a class-wide 

analysis to establish a class URN TF for small marine craft.   

Developing such a TF appears amenable to a data-driven treatment since a machine learning (ML) 

approach (i) captures the many conditions that affect a vessel URN, and their sometimes opaque inter-

relationships; (ii) takes advantage of the large volumes of URN measurements made in each instance of 

a ranging, and (iii) the burden of diverse data sources is reduced due to the hypothesized smaller 

diversity within a small vessel class.  This section describes the method by which the URN TF is 

developed and evaluated.  This effort has been presented at the International Conference on 

Underwater Acoustics (ICUA) and published in the 2022 proceedings [1].  

4.1 URN Transfer Function Development Methodology 

There are three steps to developing an URN TF for a class of vessels.   

Firstly, representative class members are acoustically ranged over a range of vessel operation and 

environmental conditions. Each vessel’s recorded URN is correlated with on-board measurements of its 

structure-borne noise, machinery states, hull fouling, and weather. This assumes sufficient class insight 

to identify representative members.  Otherwise, a larger set of class members are selected for ranging. 

Then, unique class features are identified.  For small vessels, these features are proposed to be: (i) 

length overall (LOA), draft, and tonnage; (ii) propulsion system; (iii) auxiliary equipment; (iv) hull form 

and hydrodynamic features; (v) cavitation inception speed, the extent that cavitation dominates their 

URN, and (vi) operating speeds.   

In the second step, a TF is computed to predict the vessel’s URN based on on-board measurements. A 

neural network is proposed as such networks can learn complex, non-linear relationships in multi-

variate systems. In this case, the on-board measurements are the input features while the URN is the 

output. A supervised learning approach is proposed using measurements collected from the first step. 

While training the neural network, correlations in input features are identified as correlated features do 

not provide additional information to the network and can obscure the learned relationships. After 

training, the learned URN TF predicts the vessel’s near-real-time URN through a sensor suite which 

measures the conditions. To optimize the design of such a sensor suite, the features of the neural 

network are analyzed in the third step.   

The final step analyzes the sensitivity of the predicted URN to the on-board measurements.  The 

resulting list of sensitive features indicates whether the URN signature for the class of vessel is 

dominated by cavitation, structure-borne noise, or hull noise at particular speeds.  In addition, for the 

purposes of this project, the sensitivity analysis allows us to define a minimum viable instrumentation 

package for URN prediction towards CBM by ensuring the most sensitive features are measured by the 

selected instruments.   

4.2 URN Transfer Function Model Design 

In general, Machine Learning (ML) develops a model that relates input features to one or more output 

variables. For an URN TF, input features can include vessel characteristics (e.g., dimensions, draft, 
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machinery states, etc.), vessel and environment interactions (e.g., water temperature, extent of hull 

fouling, maneuvers, sea state, etc.) and operational conditions (e.g., speed, aspect into sea state, etc.). 

The output would be decidecade URN frequency-domain spectra that relate to the on-board 

measurements. This is a regression problem since the output is a vector of real-valued scalars. Since 

labelled examples of expected outputs for input feature vectors are available to train the model, 

supervised learning can be applied. Given sufficient training examples, the model correctly predicts the 

output for an input feature vector not used in training. 

We have chosen to use a neural network (also called a multi-layered perceptron (MLP)) as they are 

effective when applied to problems with large numbers of input features with complex relationships to 

the output vector that are unknown. A neural network is a fully connected network where values from 

one layer are passed through weighted links to subsequent layers. Training an MLP is the process of 

identifying the weights for each link in the network [2]. A disadvantage of MLPs is their lack of 

transparency in the predicted output and thus an inability to express this in an analytic form. 

Implementation of the MLP was achieved with the scikit-learn MLP Regressor. Multiple MLP structures 

were evaluated. The best performance was achieved for an MLP with a single hidden layer of 200 nodes. 

The input layer had 184 nodes (the number of input features) and the output layer had 27 nodes (the 

number of bins in the URN decidecade spectrum between 100 Hz and 50 kHz). 

4.3 URN Transfer Function Training Approach 

To train an MLP, many examples (i.e., pairs of input and output data) must be provided.  In this case, 

each example corresponds to a particular run.  These must be collected from representative class 

members under different conditions (i.e., speeds/operating conditions, environmental conditions, hull 

cleanliness levels, etc.), while measuring those conditions accurately.  Following the K-folds cross-

validation technique, the examples (runs) are divided into k equal subsets (folds), with (k − 1) folds used 

for training and the final fold for testing (verification). The training and testing cycle is repeated k-times, 

once for each fold being used as the test set.  The accuracy of the predicted URN compared to the 

measured URN is averaged across frequency bins for each test set to develop a consistency measure for 

the MLP’s performance.  Parameters of the MLP model are adjusted until the performance of the URN 

TF either matches a predefined criteria or reaches an optimum.  This approach is shown in Figure 4-1.  

 

Figure 4-1 URN TF Training Approach 
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4.4 URN Transfer Function Performance 

To evaluate the proposed URN TF methodology, preliminary testing was completing using the dataset 

collected under the previous TC project “Underwater Radiated Noise (URN) and Green House Gas 

Reduction Program for Canada’s Inshore Fishing Craft” [3].   That document describes the acoustic 

ranging approach followed, the conditions, the specifics of the representative vessels from the Cape 

Islander class, and the dataset collected.   

4.4.1 Cape Islander Dataset 

In summary, five vessels were ranged three times resulting in 15 trials, each consisting of 4-6 runs each 

at different speeds.  Input features measured for each run included: vessel characteristics (an arbitrary 

ID, age, and dimensions (beam, length over all, draft), engine size, number of blades on the propeller, 

engine strokes, whether the vessel was turbocharged, dry weight), date and weather conditions (time of 

day, wind speed, water temperature, air temperature, tide height, wave height), and operating 

conditions (planned speed, reported RPM, measured engine RPM, GPS-based speed over ground, 

number of passengers, fuel level, propeller cage presence, heading, measured power, fuel flow rate, 

whether the hull was cleaned before the trial, NSTM measure of hull cleanliness, what coatings were 

applied to the hull, the airborne noise level in the engine compartment, and the structure-borne 

vibration levels as measured on the engine mounts and on the hull above the propeller).  The output 

was the decidecade URN spectrum between 100Hz and 50kHz for the run, averaged between the 

reciprocal passes in opposite directions. Measurement uncertainty is ~5 dB for the system. 

4.4.2 Correlation Analysis 

Excluding the airborne noise and structure borne noise spectra collected, a correlation analysis was run 

using all of the data collected for the Cape Islanders.  The result is shown in Figure 4-2.  

MLPs and other models perform best when there are few correlated features, as they cannot distinguish 

whether an output parameter is being driven wholly or in part due to one or each of a set of correlated 

input parameters.  The five strongly correlated groups are listed below with retained features in bold: 

• NSTM level and clean Boolean. 

• planned speed, speed over ground, reported RPM, RPM, and fuel flow rate. 

• vessel dimensions (beam, draft, length overall, dry weight). 

• vessel dimensions, fuel level, and engine HP. 

• water temperature and air temperature. 

This list shows that for the preliminary analysis, some strongly correlated parameters were retained as 

they were intuitively believed to be important to modelling a vessel’s URN. Future work includes 

removing all but one variable from each strongly correlated group to better understand the MLP’s 

sensitivity and performance with a very limited set of parameters.  
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Figure 4-2 Correlation analysis results with intense blue or intense red indicating strongly correlated 

parameters.  The strongest correlations are indicated by an asterisk (∗). 

 

4.4.3 Results 

The MLP training was performed using 5-fold cross-validation. The prediction errors for each fold and 

on average are summarized in Table 4-1.  

Table 4-1 Prediction error of Cape Islander URN TF showing consistency among the folds. Good 

prediction accuracy and precision was achieved, given 5 dB measurement uncertainty.  

fold error [dB re 1 μPa at 1 m] standard deviation [dB re 1 μPa at 1 m] 

0 6.11 4.48 

1 7.73 4.47 

2 6.66 4.28 

3 5.65 3.96 

4 7.01 5.68 

average 6.63 4.57 
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Each fold’s prediction error, in each decidecade frequency bin is shown in Figure 4-3 with error bars 

showing one standard deviation from the mean prediction error for that fold’s verification set. 

 

Figure 4-3 URN TF prediction error for each of the five folds, showing consistency across frequency bins.  

The results across all five folds are consistent, meaning no particular run was poorer in accuracy than 

the others, nor that the URN TF was less effective for one of the vessels or conditions. On average, the 

URN prediction error was 6.63 ± 4.57 dB re 1 μPa at 1 m. This was generally higher at lower frequencies 

(below 400 Hz), which may be due to the higher low frequency ambient noise. The prediction error is 

surprisingly low given the measurement uncertainty was estimated at 5 dB, and minimal control of 

ambient noise levels were applied. This shows confidence in the efficacy of the proposed TF 

methodology. 

4.4.4 Sensitivity Analysis  

The ten most important features based on permutation importance analysis were: (1) Day of Year, (2) 

RPM, (3) Engine HP, (4) PropVib 10 Hz, (5) PropVib 12.59 Hz, (6) PropVib 15.85 Hz, (7) Power, (8) NSTM, (9) 

PropVib 19.95 Hz, and (10) PropVib 7.94 Hz. In this list, PropVib refers to a frequency bin for the 

accelerometer on the hull above the propeller. 

This shows the expected trend that the model was sensitive to cavitation, vessel dimensions, the drive 

train, and vessel cleanliness. A notable Cape Islander class feature is that their URN is cavitation 

dominated. This is in the high permutation importance scores for several low frequency bins of the 

accelerometer located above the propeller. In the correlation analysis the engine power was highly 

correlated with the LoA for the Cape Islanders (bigger engines on bigger vessels). As well, the engine 

power’s place in both analyses show the URN prediction generally depends on the vessel dimensions. 

Similarly, the impact of speed on URN prediction is shown by the presence of power, engine speed and 

fuel flow rate in these analyses which are correlated for diesel engines. The presence of NSTM in the 

permutation importance analysis reveals that hull fouling impacts the URN. 

The sensitivity to the ‘day of year’ was unexpected. On reflection, ‘day of year’ represents environmental 

variables that impact underwater noise propagation like sound velocity profile, water temperature, 

salinity, underwater ambient, and sea bottom growth. Further, Cape Islander fishing operations are 

seasonal with annually varying installed equipment and maintenance (cleaning) activities. These 

seasonal operations were not otherwise captured and may have increased the sensitivity to the date. 

Future study is needed to understand the underlying factors that result in this ‘day of year’ sensitivity. 
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4.5 Day of Year Sensitivity 

Although, the correlation analysis (see Figure 4-2) showed weak correlations between the ‘DayOfYear’ 

feature and several of the weather related features (wind speed, air temperature, water temperature) 

the performance of the URN predictor degraded when those features were used in place of the day of 

year indicating that those measures alone are not sufficient to capture the date-driven variance that 

influenced the URN.  It is unclear whether the sensitivity to the date indicated the neural network was 

learning each day individually, or if there were underlying features during particular periods of the year 

that we could capture (e.g., changing equipment, underwater ambient noise levels, etc.).   

The performance of the URN predictor was tested using a brute-force approach, where the ‘DayOfYear’ 

feature was incrementally replaced with weekly, monthly, and seasonal approximations (e.g., for the 

monthly approximation, all days in January were labelled as 0, February were 30, June were 150, etc.). It 

was found that dividing the year into three bins that corresponded to: before July (labelled 100), 

between July and mid-October (labelled 200), and after mid-October (labelled 300) resulted in the best 

performance.  The performance using the ‘DayOfYear’ was on average 6.6 ± 4.6 dB, while with this 

approximation for ‘DayOfYear’ the performance was 6.7 ± 4.8 dB.  This indicates that there is a seasonal 

variation driving the sensitivity to the date.   

Whether this seasonal variation is driven by vessel conditions or environmental conditions remains 

unclear.  However, if we look at the underwater ambient noise levels measured on each trial day (some 

days only one ambient was recorded, while on others there were multiple ambients recorded) there is a 

similar pattern.  Figure 4-4 shows the recorded ambient levels, coloured to reflect the same divisions as 

identified for the date sensitivity (i.e., before July, between July and October, and after mid-October).   

This suggests that the day of year sensitivity may be related to the underwater ambient level on the trial 

day.  However, the segmentation of the ambient records by date is not distinct; there are many bins 

where they cannot be separated into three distinct seasons.  While this is one step closer, future trials 

should be designed to either capture the underlying factors that may affect the day-to-day variation in 

URN levels or reduce the variance of those factors so that the URN TF can be developed without the 

impact of these unknown variables.  
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Figure 4-4 Underwater ambient noise levels during Cape Islander Trials between 2020 and 2021.  

Colours indicate records taken before July (pink), between August and early October (cyan), and after 

mid-October (blue).   

4.6 URN Transfer Function Feature Set Recommendations 

The URN TF sensitivity analysis provided insight into how the predicted URN varied due to individual 

parameters. For the development of an instrumentation package for CBM it is of interest to know how 

the performance changes with a particular set of features.  With this in mind, a set of features were 

chosen that would be easy to collect using a minimally invasive instrumentation package, based on this 

performance the features were adjusted until the complexity of the features was balanced with the 

overall performance of the URN TF.   

4.6.1 Analysis towards a Reduced Feature Set 

Based on their high sensitivities in the previous analysis, the feature set began by keeping the seasonal 

approximation for ‘Day of Year’, ‘Engine RPM’, and the full spectrum from the accelerometer placed on 

the hull above the propeller (called ‘PropVib’ for short).   

The sensitivity to the ‘YrBuilt’ feature (i.e., the year the vessel was constructed which ranged from 1979 

through 2015) was of concern as its value was unique to each of the vessels tested. To ensure the neural 

network was not learning to estimate the URN for each individual vessel, the Year Built was reduced to 

the Decade Built (i.e., if built before 1985 the vessel was labelled as 1980, if built before 1995 the vessel 

was labelled as 1990, if built before 2005 the vessel was labelled as 2000, and if built before (or in) 2015 

the vessel was labelled as 2010). This resulted in no change in performance accuracy.   

Noting the high sensitivity to the vessel dimensions, each dimension (breadth, draft, LOA, dry weight, 

and engine HP) was tested to determine which had the best performance.  The results were quite 

similar, with slightly better performance when engine HP was included in the feature set.   
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Finally, the extents of the frequency range for the ‘PropVib’ feature were reviewed in two ways.  To 

begin, the spectrum was divided into subsets where each subset contained one decade of decidecade 

bins (i.e., < 10 Hz; 10 to 100 Hz; 100 Hz to 1000 Hz; 1000-10000 Hz; and > 10000 Hz).  Each subset and 

combinations of these subsets was tested.  This showed that the URN prediction accuracy was 

maintained when trained included the 10-100 Hz frequency range at minimum.  Next the decidecade 

bins within each of the subsets were averaged in different ways.  We considered a) one bin comprising 

all recorded decidecade bins, and b) one bin comprising all recorded decidecade bins between 10 and 

100 Hz.  Both a) and b) were found to have no negative impact on the performance of the URN 

prediction.  This suggests that it would be acceptable to use an accelerometer that measures the 

vibration per decade between 10 and 100 Hz, rather than the vibration in each decideacde bin.   

The resulting set of features were: Season of Year, Decade Built, Engine HP, Engine RPM, and ‘PropVib’ 

for the decade between 10 and 100 Hz.  Note that each of these features are only a single value (none 

are arrays / vectors).  This set resulted in minimal performance degradation at 6.6 ± 4.6 dB re 1 μPa at 1 

m, demonstrating that many of the recorded features were strongly correlated and providing no 

additional information to the URN TF.  These five features are considered to be the minimal viable 

feature set for a Cape Islander class URN TF.   

Since this analysis is based on a preliminary dataset which showed high sensitivity to the ‘Day of Year’, 

several additional measures were included in the trials conducted during the Fall of 2023, as described 

in the recommendations below.   

4.6.2 Recommendations 

Based on this analysis, the CBM instrumentation package (including both vessel operator-provided data 

as well as sensor data) should collect the following information at minimum: 

• Engine RPM. 

• Structure-borne vibration of the hull above the propeller (priority on ~10-100 Hz decade band). 

• Engine horsepower (HP) (static vessel characteristic). 

• Day of the Year (to be converted into a season, based on the ambient recorded). 

• Year the vessel was built (to be converted into a decade). 

In recognition that the analysis is based on a preliminary dataset collected for a slightly different 

purpose and spanning more than a year, it would be beneficial to gather some additional features.  

These features include those that are typically needed to generate analytical or numerical models for a 

vessel’s URN and can be used to review and hopefully confirm the correlations and insights from the 

preliminary dataset. If possible, the instrumentation package should also collect: 

• Structure-borne vibration at the engine mount. 

• Weather: air temperature, tide level, wind speed, wave height. 

• Hull cleanliness/fouling extent (NSTM level). 

As mentioned in the discussion of the sensitivity to the day of the year sensitivity, it would be beneficial 

to collect future datasets over a shorter period of time (e.g., a few weeks) to reduce the trial-to-trial 

variation in equipment presence, vessel/engine/propeller maintenance, and environmental conditions 

(e.g., weather, state of the seabed).  Simultaneously, additional measures of variation between trials 

should be tracked to explain any such sensitivity.  These additional measures should be developed in 

coordination with the Cape Islander operators/owners who have the best insight to why their vessels 

may perform differently day-to-day.   
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5. Instrumentation Package  

The instrumentation package is composed of two parts, Data Processing, and Data Acquisition; the 

latter being further subdivided into Analog-Digital Conversion (ADC) and Sensors. 

Data processing is handled by a computer, where measurements obtained from the Data Acquisition 

side are used in calculations which yield useful numerical results. In the case of this project, vessel 

Vibration, Speed, and Engine RPM measurements are used as inputs to a transfer function trained to 

predict URN. This section considers various options for building a low-cost instrumentation package. 

5.1 Data Acquisition 

Upon research of the options available for long term, in situ Data Acquisition, Analog Digital Conversion 

is of critical consideration – it must be decided what kind of analog signal is to be produced by the 

sensors and acquired by the ADC.  

For the purposes of this project, the type of accelerometer used determines the ADC requirement for 

Data Acquisition. Consequentially, other analog sensors should conform to the type of signal produced 

by the accelerometers to prevent unnecessary redundancy in ADC components. 

5.1.1 Accelerometer(s) 

The two types of accelerometers considered for this package are Integrated Electronics Piezo-Electric 

(IEPE) accelerometers which produce a dynamic signal transmitted as a voltage representing the 

vibration measured, and 4-20 mA accelerometers which transmit a current which corresponds to either 

the RMS or Peak vibration trend.  

IEPE accelerometers produce a dynamic voltage signal that corresponds to the acceleration 

experienced at the point of measurement. This signal can be used to perform frequency analysis of the 

vibration at the point of measurement through FFT and can be computed into RMS or Peak trend data. 

IEPE sensors require constant current power supplies and ADCs which conform to the specification. 

IEPE data acquisition systems cost significantly more than 4-20 mA systems. 

The 4-20 mA accelerometers produce a current that corresponds to either an RMS or Peak vibration 

trend at the point measured within a predefined frequency range. 4-20 mA sensors are commonly used 

in industrial settings for continuous monitoring applications, and readily interface with PLC systems. 

Thus, data acquisition systems for these sensors are less costly than IEPE systems. 4-20 mA 

accelerometers are more limited in the frequency range they can measure, and frequency analysis 

cannot be performed with data obtained from 4-20 mA accelerometers, as they only output an overall 

RMS or Peak level within the frequency band specified and not a dynamic signal representing the 

vibration at the measurement point.  

4-20 mA accelerometers are tuned to a maximum vibration level they can measure, with the “full-scale” 

amplitude being read at an output current of 20 mA. Vibration levels exceeding this maximum will 

remain as an output of 20 mA, so care must be taken to select an accelerometer with an appropriate 

full-scale vibration level. Velocity RMS levels above the propeller of Cape Islander fishing boats in a 

previous study were found to generally not exceed 50 mm/s between 2.5-Hz-20kHz. However, some 

data points taken at very high and atypical engine RPMs put the maximum measured velocity RMS at 75 

mm/s between 2.5-Hz-20kHz [3]. 

5.1.2 Vessel Speed 

Vessel Speed Over Ground (SOG) is easily acquired via GPS. Many GPS devices exist which interface to 

computers via serial cable, USB, and Ethernet.  
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Vessel Speed Through Water (STW) is the vector between the vessel’s Speed Over Ground and the Water 

Resistance experienced by the vessel. Water current speed is generally measured via a paddlewheel 

transducer. Collecting this information is likely not necessary, as large current effects can be inferred 

from relatively high engine RPM corresponding to slower SOG, and engine RPM alone is enough to 

predict URN. 

5.1.3 Engine RPM 

Engine RPM is determined either via direct measurement of the physical rotation produced by the 

engine with optical, proximity, or magnetic sensors or inferring it by measuring electrical pulses of 

equipment related to engine combustion processes, such as spark plugs for a gas fired engine, fuel 

injectors of diesel engines, or pulses produced by rotation of an alternator. Devices can output RPM 

measurements as a voltage pulse or 4-20 mA current – both kinds of device are commonplace and are 

not significantly different in cost or accuracy.  

Hall-effect sensors are commonly used to measure engine RPM, are inexpensive, and are built for 

industrial environments. They work through measuring the presence of a magnetic field, usually though 

a magnet attached to a piece of rotating machinery, or from a magnet housed inside the sensor 

interacting with a ferrous material such as gear teeth.  

5.2 Data Processing 

Data acquired is used as inputs for the URN transfer function. The computer used for data processing 

must be capable of performing the necessary calculations. Single Board Computers (SBCs) are small 

form factor but are fully featured computers capable of complex calculations, data processing, and 

display.  

5.2.1 Single Board Computer 

Many SBC options exist, with the most prominent and widely used being the Raspberry Pi. Processor 

architecture of the SBC is of significant consideration, as the manufacturer of DAQs most used with IEPE 

accelerometers, National Instruments (NI), does not offer driver support for ARM processor 

architectures, limiting SBC selection to x86/x64 architectures only if NI DAQ equipment is used. The 

Raspberry Pi has an ARM processor and would be incapable of interfacing with NI DAQ equipment.  

Specific attention is brought to NI equipment as LR already owns an NI IEPE accelerometer DAQ system 

that could be used to validate any system built, so reference to an instrumentation package that is 

directly comparable to this equipment is included. 

It was determined that frequency analysis is not essential to the URN transfer function, so IEPE DAQs, 

and thus NI equipment, are not necessary, and the Raspberry Pi SBC is more than sufficient. 

Nonetheless, an IEPE Raspberry Pi based system is included as an example of a mid tier system capable 

of performing frequency analysis. 

5.2.2 Vessel Data Input 

The URN transfer function requires specific vessel characteristics as input parameters, such as draft, 

propeller characteristics, engine horsepower, and date of build. Other information could be collected 

for correlative purposes, such as when maintenance occurs and what maintenance was performed. 

Vessel characteristics and other correlative information can be user defined in SBC software accessible 

to the end user of the instrumentation package.  

The SBC URN prediction software requires a user accessible Graphical User Interface (GUI) capable of 

displaying sensor measurements, taking inputs of vessel parameters used by the transfer function, and 
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the resultant URN prediction. Vessel characteristic parameters would be defined during setup of an 

instrumentation package on a vessel through the GUI but could be altered later if necessary.  

The URN prediction software at its most basic would take sensor measurements, calculate the URN 

transfer function, and display the result. However, it would be possible for the SBC software to log 

sensor measurements and resultant URN predictions, display historical data and URN trends, and 

perform statistical analysis of measurement data.  

Correlations between historical datum could potentially be used for condition-based monitoring, 

notifying the user when relationships between measurements deviate significantly from historical 

norms. For example, higher than average RPM measurements coupled with lower-than-average speed 

measurements could indicate engine performance issues. Or increased propeller vibration and engine 

RPM measurements at lower vessel speeds could indicate hull and propeller fouling. 

5.3 Instrumentation Package Options 

The minimally viable instrumentation package would consist of an accelerometer positioned above the 

propeller capable of outputting RMS velocity between 10-100 Hz with a maximum reading of at least 

100 mm/s, an engine RPM sensor, and an SBC and DAQ capable of taking measurements from these 

sensors, processing them, and displaying the predicted URN. This system would enable URN to be 

predicted and displayed in real-time, informing the decision-making processes of vessel operators 

looking to reduce their environmental impact. 

Capabilities in addition to this base package, such as data logging and additional sensors, would 

enable condition-based monitoring through the analysis of historical trends and correlations between 

sensors. A second accelerometer attached to the engine could be used to establish possible engine 

issues based on historical trends. GPS and weather sensors can all be added to the package with little 

additional difficulty. 

Example instrumentation packages are outlined in the following two tables. A complete 

instrumentation package will be composed of one option from each table, i.e. A-1, C-3, etc.  

Table 5-1 SBC and Accelerometer Options  

Component A B C 

SBC LattePanda 3 Delta 864 

($279) 

Raspberry Pi 4 Model B 

4GB ($76.95) 

Raspberry Pi 4 Model B 

4GB ($76.95) 

Accelerometer IEPE IEPE 4-20 mA 

DAQ NI-9250 Vibration Input 

Module ($2,615) 

+ cDAQ-9171 ($740) 

MCC 172 IEPE 

Measurement DAQ HAT 

for Raspberry Pi 

($502.46) 

Pi-SPi-8AI Raspberry Pi 

Analog Input (4 - 20 

mA) Interface ($37.71) 

Cable BNC BNC 4-20 mA Current Loop 

Power supply 12V DC ($5) 5.1V DC ($9.95) 5.1V DC ($9.95) 

Bonus features Frequency analysis, 2 

Accelerometers 

Frequency Analysis, 2 

Accelerometers 

Up to 8 accelerometers 

Total >$3,639 >$589.36 >$124.61 
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Table 5-2 RPM and Additional Sensor Options 

Option RPM Sensor GPS Weather Total 

1 Honeywell 

103SR13A-1 Hall-

effect Sensor 

($62.50) + Magnet 

- - $109.10 

2 
Honeywell 

103SR13A-1 Hall-

effect Sensor 

($62.50) + Magnet 

GNSS200L 

Industrial high 

sensitivity USB 

GNSS Receiver 

($69.95) 

- $179.05 

3 
Honeywell 

103SR13A-1 Hall-

effect Sensor 

($62.50) + Magnet 

GNSS200L 

Industrial high 

sensitivity USB 

GNSS Receiver 

($69.95) 

ECOWITT 

Wittboy Weather 

Station ($269.99) 

$449.04 

 

We chose to build a C-1 for this project as GPS is not used by the transfer function and is unnecessary to 

include in the build.  The C-2 would be considered as the CBM instrumentation package for general use 

where logs of speed and location were of interest.  C-3 would also be of interest, however given the 

significant relative cost increase of the weather station and the limited additional value of the data it 

provides, it is not preferred.  

5.4 Prototype CBM System 

A C-1 system was ultimately built for this project. A Raspberry Pi Model 4B 8GB SBC, Pi-SPi-8AI+ DAQ, 

Honeywell 103SR13A-1 Hall-effect Sensor, and Wilcoxon PC420-VR-50 4-20 mA Accelerometer were 

procured along with required cabling and casing as seen below. 

 

Figure 5-1  CBM C-1 Prototype Internals. Left: Raspberry Pi 4B. Right: Pi-SPi-8AI+ Raspberry Pi Analog 

Input (4 - 20 mA) Interface. 
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Figure 5-2  Assembled CBM C-1 Prototype 

Figure 5-1 shows, from left to right, the Raspberry Pi 4B SBC and Pi-SPi-8AI+ DAQ insert into a weather 

resistant case with holes drilled for the tachometer, accelerometer, and power cables. Figure 5-2 shows 

the case screwed shut. The yellow cable is attached to the Wilcoxon 4-20 mA accelerometer and the 

grey cable is attached to the Honeywell Hall Effect sensor used as a tachometer. 

The Pi-SPi-8AI+ DAQ has eight analog inputs. Four inputs read 4-20 mA current sensor outputs, and the 

remaining four inputs read 0-6.6 VDC voltage sensor outputs. 

 

Figure 5-3  CBM system in-situ on a fishing boat trial powered from a portable power pack. 



 

TR-24-18  Page 22 
22 March 2024   

  

Figure 5-4  Two accelerometers mounted on hull above fishing boat propeller. Mounted Left: CBM 4-20 

mA Wilcoxon Accelerometer. Mounted Right: IEPE reference accelerometer. 

 

Figure 5-5  Hall Effect Tachometer mounted to hull pointed towards propeller shaft with tachometer 

triggering magnet taped to shaft. 
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Figure 5-6  Close up of Hall Effect Tachometer and triggering magnet. 

5.4.1 Prototype CBM System Software 

The Raspberry Pi SBC performs all data logging, data processing, GUI web serving and Wi-Fi access 

point networking functionalities. The data logging and processing software of the CBM system was 

written in Python. The WebApp GUI was written in JavaScript using the ReactJS library and is hosted 

locally on the Raspberry Pi using a Python based webserver. The Web App is accessed by connecting a 

suitable device to the Wi-Fi access point generated by the Raspberry Pi and visiting the domain 

raspberrypi.home:3000 in a JavaScript enabled web browser. 

Sensor outputs are digitized by the Pi-SPi-8AI+ interface and are continuously read, timestamped, and 

logged to a database by a Python script running on the Raspberry Pi. There is a data processing script 

running in parallel to the data reading and logging script which accumulates buffers of 1000 sensor data 

points at a time. This buffer contains the last 1000 outputs read from the tachometer and 

accelerometer. The buffer points are used to determine average propeller shaft RPM and velocity RMS 

of the hull above the propeller over the buffer duration, which are then input to the URN prediction 

transfer function along with boat specific variables. The spectrum output by the transfer function, along 

will all transfer function inputs - including the determined shaft RPM and velocity RMS - are also 

timestamped and logged to the database in a separate table. 
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Figure 5-7  Screenshot GUI webapp accessed via a smartphone web browser plotting a real-time stream 

of voltage data read from the Pi-SPi-8AI+. Input A5 is the output read from the hall effect tachometer.  

The voltage data buffer read from the tachometer is used to determine the average shaft RPM over the 

buffer duration by measuring the duration between voltage dips caused by the magnetic triggering of 

the hall sensor via a peak finding algorithm. 
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Figure 5-8  Webapp GUI displaying a plot of the 1000-point data buffer of tachometer voltage data along 

with the peaks found via the peak finding algorithm used to determine average shaft RPM over the 

duration of the data buffer. Timestamps are logged in UTC and were displayed as such in this plot. 

The Wilcoxon accelerometer outputs a current between 4-20 mA which maps to an RMS velocity of 0-

127 mm/s. This current is read by the Pi-SPi-8AI+ and is written to a database without conversion to 

velocity RMS. The current is averaged and converted to mm/s RMS in the data processing buffer and 

logged in the processed data table.  
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Figure 5-9  Webapp GUI plotting real-time stream of velocity RMS data measured from the 4-20 mA 

Wilcoxon accelerometer. 

The URN transfer function also requires boat specific parameter inputs, such as boat engine 

horsepower and date of build. The parameters used by the data processing script for the transfer 

function can be set in the Webapp GUI as seen in Figure 5-10. 

 

Figure 5-10  Boat parameter input interface in the webapp GUI. 

The dropdown menu contains boat parameter presets for all boats involved in this trial, as well as an 

option to add custom boat data if the need arises. The “Set Time” button syncs the Raspberry Pi system 

clock to the clock of the device accessing the webapp. This button was included to ensure accurate 

datalogging timestamps while lacking a real-time clock (RTC) module on the Raspberry Pi. Without an 

RTC, the Raspberry Pi will not keep time between power cycles and normally relies on internet 

connectivity to sync its clock. Since the CBM system does not connect to the internet, an external clock 

source such as one provided by a smartphone or laptop is necessary. This issue can be avoided with the 

addition of an inexpensive RTC module for the Raspberry Pi. 
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Figure 5-11  Predicted URN spectra plot by the webapp GUI as determined by processed tachometer 

and accelerometer inputs and boat specific parameters. 

Figure 5-11 shows the spectra output by the URN transfer function as well as all parameters input to 

produce it in the text to the right.  

5.5 Trials with Prototype CBM System 

Sea trials, as described in Section 3 Trial Method and Data Collection, were undertaken with fishing 

boats equipped with the prototype CBM system which travelled past hydrophones measuring the URN 

produced by each boat at varying speeds during dynamic trials, and varying engine RPM during static 

trials.  
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Figure 5-12  Photo of the support vessel with hydrophone system deployed as the boat under test 

passes during a sea trial. 

Sea trials with the CBM system on the four fishing vessels went smoothly after getting used to the 

specifics of setting up the sensor hardware. Alignment of the tachometer toward a trigger with a 

sufficiently strong magnetic field is essential. Early trials suffered minor delays with system installation 

due to magnet placement and fixturing to the shaft. A weak magnet was replaced with a spare that 

performed better, and unnecessarily thick tape that impeded the magnetic field was removed and 

replaced with thinner electrical tape which did not impede the field. After best practices for the hall 

effect tachometer were found, installation of the system was fast and efficient. 

There were no significant issues experienced with the CBM system itself during trials. It reliably read, 

processed, and logged data as expected, and system parameters were configured via the WebApp GUI 

as expected and without issue. The few issues that were encountered were related to the sensor 

mounting;  in one case the magnetic base accelerometer was dislodged from the steel plate attached to 

the hull, and in another the Hall-effect sensor mount became loose and the sensor moved away from 

the triggering magnet resulting a loss of RPM data. However, there were no failures of sensors or data 

acquisition hardware and the mounting issues could be resolved by using more permanent mounting 

fixtures rather than the temporary mounts used during the trials. 

Monitoring sensor outputs and processed data via the WebApp GUI ensured sensors were installed 

properly and working as expected. The WebApp GUI was primarily used by smartphones throughout the 

trials and was fast and convenient to use. A tablet was also used to access the WebApp GUI once during 

a trial.  

Fishing boat captains were shown the WebApp GUI and had interest in the data displayed. They were 

curious to know the findings of our study and if a URN predicting CBM system such as the one field 

tested could improve their fishing or help reduce their impact on the environment. Future 

considerations for the WebApp GUI could incorporate limits related to marine life of interest and more 

obvious indicators of when those limits are exceeded. 

6. URN Transfer Function Results 

6.1 Results Using 2020/2021 Data for Training 

It was intended to use the 2020/2021 fishing vessel URN measurements [3] to train an MLP, as described 

in Section 4, and use the URN data collected during the current project (trials conducted September-

October 2023) to verify the system performance. However, the ambient levels recorded in 2020/2021 

differ from those record in 2023.  In the band between 100-1000 Hz, the 2020/2021 records show levels 

between approximately 110-130 dB while the 2023 records are between approximately 90 – 120 dB, as 

shown in Figure 6-1. This difference in recorded level is also reflected in the recorded URN from the 

vessels that participated in both trials, as given in Figure 6-2. 
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Figure 6-1 All ambient recordings in 2020/2021 (left) and 2023 (right).  

  

Figure 6-2 Just Once (clean no cage, not freshly coated) from 2020/2021 (left) and 2023 (right). 

  

Figure 6-3 This Is It (clean no cage, not freshly coated) from 2020/2021 (left) and 2023 (right). 

The reason for these differences in the measured results have not been confirmed. There are several 

factors that could influence the measurements: 

- The 2020/2021 trials were conducted in an estuary in shallow water (20m), whereas the 

2023 trials were conducted in open water that was relatively deep (50m) water.  

- The 2020/2021 measurements were obtained with a single hydrophone located near the 

surface. The 2023 trials used two hydrophones located at 15m and 40m depth. 

Given this difference, the URN levels predicted by the CBM using the URN TF trained on 2020/2021 

records were inaccurate.   
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6.2 Results Using 2023 Data for Training 

To overcome the discrepancies in the URN data sets, a new URN TF was trained and tested on 2023 

data alone, using both the trials without the cages and with the cages (the fouled cage trial data was 

not included in the training and testing dataset).   

The process for training and testing the MLB with the 2023 trial data is very similar to that applied to the 

2020/2021 dataset, as described in Section 4, with two exceptions:  

• First, the 2020/2021 URN TF was trained on the URN spectra for each speed calculated from 

reciprocal runs as required by ISO 17208.  Instead, the 2023 URN TF was trained using each 

individual run (i.e., not averaged direction for currents).  This is because the URN TF is intended 

to provide an estimate of the URN for a vessel based on engine/shaft RPM, not speed over 

ground.  

• Second, the 2020/2021 URN records were recorded using one hydrophone, while the 2023 

recordings were made on two hydrophones (one at 15 m depth and the other at 40 m depth). As 

specified in the LR ShipRight ADP for URN, each recording is compared to the background noise 

(Ambient) level.  If the URN signal at any frequency bin is < 3 dB above the background noise, 

that bin must be excluded, otherwise it is corrected using the correction in ISO 17208. The multi-

layer perceptron multi-output regressor used to train the URN TF cannot learn when there are 

‘gaps’ in a target URN spectrum.  As a result, runs in which there are fewer than two frequency 

bins that should be excluded are used with those frequency bins included.  Otherwise, that 

hydrophone record is considered invalid. If both hydrophone records are valid, they are 

averaged.  If only one of the two hydrophone records is valid, it is used.  If neither hydrophones’ 

records are valid, that run is excluded from the train/test set.   

As noted in CBM section, the Accelerometer became dislodged during one of the trials and there were 

some dropouts of the Tachometer. As a result, two additional runs were excluded from the training set. 

This results in 51 runs from the 2023 trials that could be used in the training/testing set.   

As before, the records were divided into 5 folds for cross-validation (each fold contains a unique subset 

of records which includes some examples from each boat, speed, and cage/no cage state).  Five 

training/testing iterations were performed where each iteration used one fold for testing and the other 

four for training. This provides insight into the consistency.  If the test results from one of the folds is 

significantly better or worse than the other four for the same model hyperparameters, this would 

indicate one or more of the examples from that set are outliers that could skew the trained model. The 

prediction errors for each fold and on average are summarised in Table 6-1. 

Table 6-1 Test performance of URN TF trained on 2023 records 

Fold Average error [dB] Maximum error [dB] 

0 3.7 17.5 

1 4.7 24.0 

2 6.1 17.1 

3 4.9 16.1 

4 6.3 117.1 

Average 5.1 38.3 
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Each fold’s prediction error, in each decidecade frequency bin, is shown in Figure 6-4 with error bars 

showing one standard deviation from the mean prediction error for that fold’s verification set. 

 

Figure 6-4 Average Error on Training Set by Frequency Bin 

The average error of 5.1 dB is similar to the average error when training on the 2020/2021 records. This 

indicates that this type of data is well suited to this type of learning model.  However, the inability to 

apply the model learned on 2020/2021 records to the 2023 trials indicates that measuring the same 

vessels in different locations may not result in consistent URN levels. This points to the importance of 

using measurement techniques that account for factors such as shallow water effects, bottom type, and 

bathymetric geometry when conducting URN measurements for a given class of vessels. 

6.3 Alternate Training Approaches 

Additional work was carried out to investigate the impact of separating the records other than by 

general randomization in folds. The first approach separated the records by whether the boat had the 

cage installed (training with “no cage” records and testing “cage” records, and vice versa).  The second 

approach used records from three of the boats for training and testing with records from the fourth 

boat. While these models would not be deployed, they do indicate how well the model can generalize 

across sub-groups within the dataset.  

When separating the data by the cage/no cage feature the results in Figure 6-5 were obtained.  In this 

figure, each colour indicates a different record in the testing set with the solid line showing the logged 

URN and the dashed line showing the predicted URN using the learned TF. The following observations 

were made:  

• When training on no-cage data and testing on data recorded with the cage, the error was larger 

(9.4 dB on average), and the predicted URN had a much wider ‘spread’ than the measured URN.  

This implies that the URN records without the cage are more variable among the boats than 

their URN levels with the cage installed.  

• When training on data with the cage installed, and testing on records without the cage, the 

predicted URN levels are generally higher than the corresponding logged URN levels.  This 
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suggests that the vessels are noisier with the cages installed. On average the error was also 

larger (average error 8.6 dB) than the ‘equally’ divided training/testing groups. 

 

Figure 6-5 Testing results for model trained on No-Cage data and tested on Cage data (left), and for the 

model trained on Cage data and tested on no-cage data (right).  

The second approach of training with data from three of the boats and testing with the data from the 

fourth boat generated the results in Figure 6-6.  Using this approach, the following was observed:  

• On average the error was 12.1 dB. This Is It’s URN was generally over-estimated (average error of 

7.7 dB) by the URN TF, while Just Once was generally well estimated (average error 5.8 dB) by 

the URN TF.  Bay Bliss was generally underestimated (average error 7.6 dB). Brooklynn and Boys 

was a less consistent pattern, but was overall overestimated (average error 5.5 dB).   

• This suggests that there is a lot of variation within the class of Cape Islanders and that a larger 

number of Cape Islanders would need to be included in the training set before the model can 

generalize to other members of the Cape Islander class without specifically measuring their 

URN records for inclusion in the dataset.  
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Figure 6-6 Testing Performance results by vessel. Bay Bliss (top left), Brooklynn and Boys (top right), 

Just Once (bottom left), This Is It (bottom right).   

 

7. Conclusions  

This report shows that a small number of sensors can predict the URN for a small marine craft – in this 

case a Cape Islander – with acceptable performance (~ 5.1 dB error).  The minimal instrumentation 

package comprised only two sensors: one accelerometer located on the hull above the propeller 

providing vibration RMS velocity between 10 and 100 Hz, and a tachometer measuring the shaft RPM.  

The URN predictor also required the current season (calculated from the date) to be input as well as the 

year the vessel was built, and the engine horsepower.  

Given these requirements, we identified some options for simple and inexpensive components to make 

up the CBM instrumentation package. The recommended system includes a Raspberry Pi 4 Model B as 

the computer, a Pi-SPi-8AI Raspberry Pi Analog Input Interface board as the DAQ, a 4-20 mA 

accelerometer and a Honeywell Hall-effect Sensor to measure RPM.  In total, the cost of this 

instrumentation package is under $500 CAD.  This cost is based on ordering only enough components 

for one package, thus lacking any efficiencies of scale. The prototype instrumentation package was 

assembled, and field tested, and the user interface was developed. 
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The use of such components for CBM on small marine craft to predict URN in-situ is not well 

established.  As a result, a trial plan was developed to record data from fishing vessels using both the 

prototype instrumentation package as well as the more traditional instrumentation package used in the 

previous project’s trials (especially the DAQ and IEPE accelerometers from NI), and URN to be able to 

compare the performance using data collected under each system.  Trials were completed using the 

prototype CBM system on the 4 selected boats in September-October 2023. 

The data from the trials was processed to evaluate the ability of the prototype CBM system to predict 

URN from the vessels of this class. The CBM system was shown to produce an average error of 5.1 dB 

when trained on the 2023 trial data set.  However, the inability to apply the model learned on 2020/2021 

records to the 2023 trials indicates that data used to train the model must be obtained using consistent 

measurement methods.  The use of data record separation techniques other than by general 

randomization for training and testing was shown to increase the error in the predicted URN for the 

Cape Islander class.  The sensitivity of the data separation approach suggests that there is a lot of 

variation within the class of Cape Islanders and that a large sampling of Cape Islanders would need to 

be included in the training data set before the model can generalize to other members of the Cape 

Islander class without including their URN records. 

 

8. Performance Indicators  

Progress against performance indicators is given in the table below for each activity as listed in 

Schedule B.1 (Project Description) of the contribution agreement compared to the start of the Project. 

Table 8-1 Performance Indicators 

Activity Progress 

Activity #1: Establish the underwater radiated noise transfer function methodology for small marine craft 

Hold a kick-off meeting and 

periodic meetings 
Kick-off Meeting 6 May 2022. Progress Meetings held. 

Run an analysis of existing 

underwater radiated noise datasets 
Completed 

Collect in-water measurements of 

representative class member 

vessels 

Completed. Trials completed in Oct. 2023. 

Run an analysis of tailored datasets Completed 

Develop a progress report Interim Report March 2023 

Activity #2: Develop a low-cost condition-based monitoring sensor package prototype 

Run a preliminary component 

selection and procurement 
Completed. Procurement after April Progress meeting. 

Design a web-based user interface Completed 

Iterate and work-up the condition-

based monitoring sensor package 
Completed 

Select final components Completed 

Draft a user guide for the condition-

based monitoring sensor package 
Completed. Included in Final report Appendix A. 
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Develop a progress report Interim Report September 2023.   

Activity #3: Verify the condition-based monitoring sensor package and the underwater radiated noise 

transfer function for type of fishing vessel 

Define trials plans Completed 

Run in-water trials on (at least) two 

small craft vessels 
Completed. Trials for 4 boats completed Sept. – Oct. 2023.  

Analyse collected data for system 

verification iterations 
Completed 

Activity #4: Final reporting and dissemination 

Develop final report Delivered March 22, 2024. 

Disseminate Project results Expected to initiate when the report is approved by TC. 
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Appendix A Draft CBM System User Guide 

 



Lloyd’s Register Group Limited, its affiliates and subsidiaries and their respective officers, employees or agents are, individually and collectively, referred to in this 

clause as 'Lloyd's Register'. Lloyd's Register assumes no responsibility and shall not be liable to any person for any loss, damage or expense caused by reliance on the 

information or advice in this document or howsoever provided, unless that person has signed a contract with the relevant Lloyd's Register entity for the provision of 

this information or advice and in that case any responsibility or liability is exclusively on the terms and conditions set out in that contract. 

Technical Memo  

Project Title: AGREEMENT FOR MITIGATION OF RADIATED NOISE OF SMALL MARINE 

CRAFT USING CONDITION-BASED MONITORING 

Contract No: Contribution Agreement No. 164607  

LR ATG Control No: PRJ11100379887      

Prepared by: Ken MacKay 

Date: 22 March 2024     

Re: DRAFT C-1 Condition Based Monitoring System User Guide  



 
Contract no: Contribution Agreement No. 164607  
Lloyd’s Register Applied Technology Group  
22 March 2024 

1. Introduction 

This document describes the setup and use of the prototype C-1 Condition Based Moniting (CBM) 

system used for the prediction of underwater radiated noise (URN) for small marine vessel – Cape 

Islander Class. The C-1 CBM system is a cost-effective instrumentation package using a class URN 

transfer function to inform a vessel operator of the vessel’s current predicted URN levels based only on 2 

sensor inputs (engine RPM and hull vibration) and boat specifications. The C-1 CBM system was 

developed through a contribution agreement with Transport Cananda.  

2. System Components  

The CBM system comprises both software and hardware components as shown in Figure 2-1.  

 

Figure 2-1 CBM System Overview 

At the core of the CBM software is a class URN transfer function used in-situ to calculate the URN 

decidecade spectrum based on sensor measurements and boat parameters.  

On the hardware side, the components can be divided into three groups: the sensors, the data 

acquisition and processing system (in this case a single-board computer (SBC)), and a web enabled 

device such as a smartphone or laptop through which the operator can view and interact with the CBM 

system via local networking.  

The hardware components of the system consist of a Raspberry Pi Model 4B 8GB SBC and a Pi-SPi-8AI+ 

DAQ unit mounted in a plastic enclosure (Figure 2-2). Power for the these components are provided 

through two 110V AC power adapters supplying 5V and 12 V DC.  

The system uses a Honeywell 103SR13A-1 Hall effect sensor for measuring shaft rpm and a Wilcoxon 

PC420-VR-50 4-20 mA Accelerometer for monitoring hull vibration. The yellow cable is attached to the 

Wilcoxon 4-20 mA accelerometer and input A5 of the Pi-SPi-8AI+ DAQ unit. The grey cable is attached to 

the Honeywell Hall Effect sensor used as a tachometer and connects to input A1 of the Pi-SPi-8AI+ DAQ 

unit. The sensor cable connections are permanently attached to the Pi-SPi-8AI+ DAQ unit. 

A web access point is not provided with the system, but any Wi-Fi enabled device with a JavaScript 

enabled web browser can be used.  
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Figure 2-2  CBM C-1 Prototype Internals. Left: Raspberry Pi 4B. Right: Pi-SPi-8AI+ Raspberry Pi Analog 

Input (4 - 20 mA) Interface. The Hall effect sensor connects to the Pi-SPi-8AI+ via the grey cable. The 

vibration sensor connects via the yellow cable. 

The CBM system works by digitizing sensor outputs with the Pi-SPi-8AI+ interface and processing them 

with the Raspberry Pi.  

Sensor outputs are continuously read, timestamped, and logged to a database by a Python script 

running on the Raspberry Pi. There is a data processing script running in parallel to the data reading and 

logging script which accumulates buffers of the last 1000 outputs read and logged from the tachometer 

and accelerometer. These buffer points are used to determine average propeller shaft RPM and vibration 

velocity RMS of the hull above the propeller over the buffer duration, which are then input to the URN 

prediction transfer function along with boat specific parameters. The spectrum output by the transfer 

function, along will all transfer function inputs - including the determined shaft RPM and vibration 

velocity RMS - are also timestamped and logged to the database in a separate table.  

Users connect to the CBM system with a web enabled device via a Wi-Fi access point generated by the 

Raspberry Pi and are served a web app GUI providing control of the CBM system and data plot display 

from the device’s web browser. The processed data buffer and raw sensor data outputs are streamed in 

real-time from the Raspberry Pi to each connected device via WebSocket ports connected to by the web 

app GUI running on a device. The GUI has individual tabs for each set of data plot and are detailed in 

Section 4. These tabs are typically used to verify sensors are operating as expected during setup of the 

system by inspecting raw data streams. 

3. System Installation 

System installation is comprised of mounting the sensors and connecting the CBM unit to a power 

source: 

1. Locate the CBM unit. 

The CBM unit should be placed in a location that does not expose it to excessive moisture or heat, 

provides for routing of the sensor cables, and allows for power to be provided (through the supplied 
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power adapters). Typically, the CBM unit would be located in the wheelhouse of a Cape Islander fishing 

vessel. The supplied power adapters require two 100-240V AC inputs, and output 5.1 VDC for the 

Raspberry Pi and 24VDC for the Pi-SPi-8AI+ board (there is the option using DC-DC converters to allow 

the use of 12V or 24V ship electrical system). Figure 3-2 shows the CBM unit temporarily located on the 

floor of the wheelhouse alongside a power pack providing two 110V AC outlets. The Hall effect sensor 

cable is 7 m in length and the accelerometer cable is 12 m in length. 

2. Install Hall effect sensor and magnet on the propellor shaft. 

The hall effect sensor must be mounted such that it can detect the passing of a magnet attached to the 

shaft. A typical mounting arrangement for the Hall effect sensor is shown in Figure 3-3 and Figure 3-4. 

The magnet can be attached with a suitable tape. Note that the north pole of the magnet must be facing 

the sensor as it passes (north pole facing outward from the shaft). The supplied mount for the Hall effect 

sensor consists of an adjustable arm clamp with the sensor mounted at the end. The sensor face should 

be within 2-10 mm of the magnet as it passes.  

3. Install Accelerometer 

The accelerometer should be mounted on the hull directly above the propellor (this can be referenced 

from the rudder stock). The sensor has a 1/4-24 threaded hole that would allow it to be mounted using a 

stud of the same size attached to the hull. Alternatively, for temporary installation, a magnet with a 

threaded insert can be attached to the base of the accelerometer, which in turn can be attached to a 

small steel plate (e.g. a large washer) glued to the hull. A typical mounting arrangement for the Hall effect 

sensor is shown in Figure 3-5. 

 

Figure 3-1  Assembled C-1 CBM unit. Red arrow is the Pi-SPi-8AI+ DAQ power connection. Green arrow is 

the Raspberry Pi power connection. 
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Figure 3-2  CBM system in-situ on a fishing boat trial powered from a portable power pack. 

 

Figure 3-3  Hall Effect Tachometer mounted to hull pointed towards propeller shaft with tachometer 

triggering magnet taped to shaft. 
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Figure 3-4  Close up of Hall Effect Tachometer and triggering magnet (attached with green electrical tape 

to propellor shaft). 

 

  

Figure 3-5  (Left) CBM 4-20 mA Wilcoxon Accelerometer (yellow cable) mounted on hull above a fishing 

boat propeller. (Right) IEPE Accelerometer with magnetic base installed. 
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4. Web App Setup  

The web app provides the interface to the CBM system. The web app GUI is accessed by connecting a 

suitable device (smartphone, tablet, laptop) to the Wi-Fi access point generated by the Raspberry Pi 

(SSID “raspberrypi”, password “R@spberry1”). Once connected to the access point, open a JavaScript 

enabled web browser and visit the domain “raspberrypi.home:3000”. The browser will load the GUI and 

will appear similar to that shown in Figure 4-2. The GUI consists of several tabs accessible through the 

buttons at the top of the screen. Each of these tabs will be described below. 

 

Figure 4-1  The web app GUI upon first connecting to the domain raspberrypi.home:3000, displaying the 

message “The Websocket is currently Connecting” on the right. This message will change to “The 

Websocket is currently Open” once the connection to the sensor data webserver is established. 
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Config Tab: 

The URN transfer function requires boat specific parameter inputs, such as as draft, propeller 

characteristics, engine horsepower, and date of build. The parameters used by the data processing 

script for the transfer function can be set in the GUI as seen in Figure 4-2. The dropdown menu contains 

boat parameter presets for a select number of boats, as well as an option to add custom boat data if the 

need arises.  

The “Set Time” button syncs the Raspberry Pi system clock to the clock of the device accessing the web 

app. This button was included to ensure accurate datalogging timestamps while lacking a real-time 

clock (RTC) module on the Raspberry Pi. Without an RTC, the Raspberry Pi will not keep time between 

power cycles and normally relies on internet connectivity to sync its clock. Since the CBM system does 

not connect to the internet, an external clock source such as one provided by a smartphone or laptop is 

necessary.  

The “Download Data” button will begin a download of the SQLite database used to log all raw and 

processed data in the web browser. 

 

Figure 4-2  Config tab: boat parameter input interface in the web app GUI. 
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URN Data Tab: 

The URN data tab provides the predicted URN emitted from the vessel in decidecade sound levels in dB 

(ref 1 µPascal at 1 metre) as received in real-time from a processed data buffer WebSocket stream. Figure 

4-3 shows an example of the output by the URN transfer function. The input parameters for the transfer 

function that were used to make the prediction are displayed to the right of the plot.  

 

Figure 4-3  Predicted URN plot by the web app GUI as determined by processed tachometer and 

accelerometer inputs and boat specific parameters. 
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RPM Data Tab 

The RPM Data tab of the Web app GUI (Figure 4-4) displays a plot of the 1000-point buffer of Hall effect 

(tachometer) voltage data along with the trigger points (when magnet passes by sensor, the “X” symbols 

indicate in the plot) found via a peak finding algorithm. The software uses the average duration between 

trigger points over the duration of the data buffer to determine the average shaft RPM. The calculated 

RPM is displayed to the right of the plot along with the timestamps, buffer duration and boat 

parameters. 

 

Figure 4-4  Web app GUI displaying a plot of the 1000-point data buffer of tachometer voltage data along 

with the peaks found via the peak finding algorithm used to determine average shaft RPM over the 

duration of the data buffer.  
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Velocity Data Tab 

The Velocity data tab shows a plot of the vibration velocity calculated from accelerometer current values 

received via a raw sensor output data WebSocket stream from the Raspberry Pi.  

Vibration velocity is calculated from current measurements taken from the Wilcoxon accelerometer. The 

accelerometer outputs a current between 4-20 mA that maps to an RMS velocity of 0-127 mm/s. This 

current is digitized by the Pi-SPi-8AI+ and read by the sensor reading script on the Raspberry Pi, it is then 

written to the raw sensor data table in the database, sent to the data processing buffer, and streamed to 

any device running the web app connected to the raw data WebSocket port. The current is averaged and 

converted to mm/s RMS in the data processing buffer and logged in the processed data table.  

The numeric values and timestamp of the last received raw data message over the WebSocket port are 

displayed to the right of the plot. The maxArrayLength input field controls how many data points 

received from the WebSocket will be displayed in the plot before they are overwritten. The default is 120 

data points. Data older than the specified number of points is removed from browser memory. 

 

Figure 4-5  The Velocity Data Tab of the Web app GUI plotting a real-time stream of velocity RMS values 

calculated from the current measured from the Wilcoxon accelerometer. 
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Voltage Data Tab 

The Voltage Data Tab (Figure 4-6) plots voltage data read from the four voltage input channels (A5 

through A8) of the Pi-SPi-8AI+ streamed via the raw data WebSocket port. Channel A5 is used to measure 

the voltage output of the Hall effect sensor (tachometer).  

 

Figure 4-6  Screenshot the Voltage Data Tab of the GUI web app plotting a real-time stream of voltage 

data read from the Pi-SPi-8AI+ (channels A5 through A8). Input A5 is the output read from the Hall effect 

tachometer. The tachometer was experiencing no pulses and a steady voltage high output of 0.45 V. 
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Current Data Tab 

The Current Data Tab (Figure 4-7) plots the current data read from the four current input channels (A1 

through A4) of the Pi-SPi-8AI+ streamed via the raw data WebSocket port. Channel A1 is used to measure 

the current output of the Wilcoxon 4-20 mA accelerometer.  

 

Figure 4-7  Screenshot the Current Data Tab of the web app GUI plotting a real-time stream of voltage 

data read from the Pi-SPi-8AI+ (channels A1 through A4). Input A1 is the output read from the Wilcoxon 

4-20 mA accelerometer.  
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