AN INNOVATIVE PHYSICS-BASED MACHINE LEARNING FRAMEWORK FOR NEAR-FIELD NOISE FROM HULL AND PROPELLER (HARP)

DR. RAJEEV JAIMAN AND DR. JASMIN JELOVICA

February 27, 2024

Outline

- Background/context
 - Ship noise problem

□ HARP overview

- Objectives
- Research Activities

□ HARP research highlights

- Propeller cavitation modeling
- Near-field noise predictions
- Link with MELO project

□ Summary and way forward

MELO/HARP Research Team

Rajeev Jaiman

Jasmin Jelovica

David Rosen

Andrew Trites

Indu K. Deo

Zhi Cheng

Far-field noise and AI/ML (MELO Project)

Amir Chizfahm Sabiha Bhuiyan

Saman Lak

Ishan Neogi

Near-field propeller and vessel noise (HARP Project)

SHIP NOISE AND KILLER WHALE

Ship Noise Problem

- Marine vessels generate noise at frequencies which overlap with those used by marine mammals
 - Impact on finding prey, social interactions, navigation, and other activities

Propeller, hull vibration and ship machinery are main sources

- Large vessels produce noise up to 180-195 dB with maximum level about 200 Hz
- Cavitation produces highest level of underwater radiated noise

Sound level estimates from marine traffic (Duarte et al, 2021)

B. Southall, NOAA

Current Status of Ship Noise Problem

- There is a trade-off between noise reduction and operational efficiency (i.e. fuel consumption)
- There are currently no regulations, only voluntary guidelines (unlike IMO's onboard/airborne ship noise)
- Noise adversely effects marine life, but severity and its impact on population not understood
- Vessel noise limit and measurement procedure have not been established for URN

Need intelligent ship design and operation for reducing noise impacts over ecologically-relevant scales

Can we build AI-based design and multiphysics solution to mitigate the impact of ship noise on killer whales?

Near-field noise

Far-field propagation

Mammal location and acoustics

Objectives of HARP Project

- The project will develop new tools to help vessel designers predict the underwater vessel noise performance during the design stage
- □ Identify the potential sources of vessel noise, including on-board machinery and propeller noise
- Better design models are expected to help industry ensure that the next generation of ships embrace quiet technologies, while maintaining safety, productivity and environmental performance

Major Activities of the Project

- WP1: New high-fidelity mathematical model to analyze vibration of hull panels and propeller blades coupled with moving fluid
 - Coupled CFD/FEA analysis
- WP2: Broadband vibro-acoustic analysis of URN on the full frequency range and development of physics-based machine learning (PBML) framework

Data-driven acoustic analysis

- WP3: Development of advanced solutions and optimization/control techniques for minimization of URN
 - Data-driven vibration analysis and control

Underwater Radiated Noise (URN) Sources

crating pressure waves

HARP Framework: Physics + AI Integration

Data

11

CCG Franklin Noise Measurements

□ Transport Canada Quiet Vessel Initiative

► MELO: Clear Seas and UBC Marine Biology

CDT Measurement

Cavitation Noise Generation: Field Data

□ Three frequency regimes:

- ► Low-frequency
- Mid-frequency
- High-frequency
- Vessel speed increases noise level
- Tip vortex and sheet cavitation dominate noise generation

RV Princess Royal, Newcastle

Kalikatzarakis et al, 2023

Marine Propeller Analysis and Best CFD Practices

□ CFD-based tools

- RANS and Hybrid LES turbulence models
- Cavitation modeling (mixture theory)
- Acoustic analysis (FWH and Acoustic Perturbation)

□ Propeller Validation Cases

PPTC open propeller

MARIN TRUST JIP Single Ducted Propeller

Toroidal Propellers

HARP

Approach

Validation and Physics of Ducted Propeller

Non-cavitating propeller dynamics

- Complex turbulent wake
- Vortex-blade interactions

Zhang & Jaiman, JOE 2019

FUNDAMENTAL STUDIES ON PHYSICAL MECHANISMS

In-House Cavitation Solver with Flexible Boundaries

Bubble and Sheet Cavitation

- Handling large density ratios $(\rho_l/\rho_v) O(10^2 10^3)$
- Absence of numerical pressure spikes across cavity interface

Macro-scale turbulent cavitating flow Cavitation Number (σ) = 1.25; angle of attack= 6°

Kashyap & Jaiman, IJMF 2022

Review: Tip Vortex Cavitation

Sheet and tip vortex cavitation on a propeller in MARIN's cavitation tunnel

Tip Vortex Cavitation Noise

Sheet Cavitation

Tip Vortex Cavitation: Validation

 c_0 : Root chord length

n: Azimuthal wavenumber (oscillation mode)

- r_c : Cavity radius
- $\widetilde{U}_{\mathbf{X}}$: Non-dimensional axial velocity on cavity interface
- $\tilde{U_{\theta}}$: Non-dimensional azimuthal velocity on cavity interface
- K_{σ} : Non-dimensional stiffness coefficient
- k_x : Streamwise wavenumber
- K_n : Modified Bessel function of second kind

Semi-analytical dispersion relation

$$\frac{2\pi r_c f^{\pm}}{U_{\infty}} = \widetilde{U}_x k_x r_c + \widetilde{U}_{\theta} n \pm \sqrt{K_{\sigma}} \sqrt{\frac{-|k_x r_c| K_n'(|k_x r_c|)}{K_n(|k_x r_c|)}} T_{\omega}$$

Lak & Jaiman, JFM 2024

Propeller Singing: Tonal Noise

cavitating propeller with structural natural frequencies

OMAE 2024

Vibration displacements

Flexibility Effect on Sheet Cavitation

- Sheet cavitation on suction side of blades/rudder
 - Occurs at off-design angle of incidence
 - Results in large suction pressure at leading edge
- Flexibility adjusts pressure fluctuations
 - Cavitation cycle adopts subharmonic frequencies of propeller blade
 - Proper adjustment of flexibility and trailing edge can reduce cavitation and noise

Vortex dynamics and cloud cavitation

Propeller/rudder system (Seaspan Corporation)

Coupled bending-torsional synchronization

Darbhamulla & J., CAF 2023

Active Jet and Passive Morphing Techniques

Effect of Twisting on Tip Vortex Cavitation: Preliminary Results

FULL SCALE PROPELLER VALIDATION AND URN PREDICTIONS

> Near-field wake dynamics of full propeller

Mesh Dependency and Model Validation

Total cells number	Rotor region	Stator region	K _{T,rms}	$10K_{Q,rms}$	y+	\hat{x}_{tv}
(millions)	(millions)	(millions)				
			0.374	0.9698		
			0.380	0.9680		
18.0	15.0	3.0	0.361	1.0398	92	0.004
26.9	22.5	4.5	0.375	0.9710	40	0.006
40.4	33.7	6.7	0.378	0.9648	19	0.009
	Total cells number (millions) 18.0 26.9 40.4	Total cells number (millions)Rotor region (millions)18.015.026.922.540.433.7	Total cells number (millions)Rotor region (millions)Stator region (millions)18.015.03.026.922.54.540.433.76.7	Total cells number (millions) Rotor region (millions) Stator region (millions) $K_{T,rms}$ 0.374 0.380 18.0 15.0 3.0 0.361 26.9 22.5 4.5 0.375 40.4 33.7 6.7 0.378	Total cells number (millions)Rotor region (millions)Stator region (millions) $K_{T,rms}$ $10K_{Q,rms}$ (millions)(millions)0.3740.96980.3800.968018.015.03.00.36118.022.54.50.3750.971040.433.76.70.3780.9648	Total cells number (millions)Rotor region (millions)Stator region (millions) $K_{T,rms}$ $10K_{Q,rms}$ y^+ 0.3740.96980.3800.968018.015.03.00.3611.03989226.922.54.50.3750.97104040.433.76.70.3780.964819

> Near-field wake dynamics of full propeller

> Near-field wake dynamics of full propeller

Cavitation contour

> Near-field noise prediction of full propeller

Ducted Propeller: Effect of Nozzle

Mesh Dependency and Model Validation

	Total cells number (millions)	Rotor region (millions)	Stator region (millions)	$K_{T,rms}$	$10K_{Q,rms}$	y+	\hat{x}_{tv}
Experiments [18]				0.374	0.9698		
Other simulation [37]				0.380	0.9680		
Mesh 1	18.0	15.0	3.0	0.361	1.0398	92	0.004
Mesh 2	26.9	22.5	4.5	0.375	0.9710	40	0.006
Mesh 3	40.4	33.7	6.7	0.378	0.9648	19	0.009

Comparison of Flow Fields (1)

✓ Non-ducted

500 1000 1500 2000 2500 3000

0

 $\begin{array}{ccc} Mag(vorticity) (1/s) & \times 10^{3} \\ 0 & 5 & 10 & 15 & 20 & 25 & 30 \end{array}$

$Mag(U/U_0)$					
0	0.5	1	1.5	2.0	
1					

✓ Ducted

Comparison of Flow Fields (2)

✓ *y*-*z* planes at x/D = 0.4

✓ Non-ducted

✓ Ducted

Effect of Nozzle on Noise Spectra

 $K_{T,rms}$

0.542

0.378

0.326

 $10K_{Q,rms}$

1.2421

0.9648

0.7488

Toroidal Propeller

- Turbulence model: k-w SST DES
- Hydroacoustics: FW-H

SPL (dB) at t	he monitor	location-Traditional	propeller

L: 100 m	1: 165.0	4: 166.3	7: 165.4	16: 166.4
L: 1000 m	1: 145.0	4: 146.4	7: 145.4	16: 146.4

SPL (dB) at the monitor location-Toroidal propeller						
L: 100 m	1: 166.5	4: 167.3	7: 167.0	16: 167.3		
L: 1000 m	1: 146.6	4: 147.3	7: 147.0	16: 147.3		

Zhi & Jaiman, 2023

Propeller Wake Interaction with Hull and Rudder

- Breaking of vortex and cavitation structures (colliding with hull and rudder)
- Wake-induced vibration of rudder
- Accompanied generation of noise sources

DTMB 5415 ship model

MELO: An Adaptive Physics-Based <u>MachinE</u> Learning Framework for Anthropogenic Noise and Ocean Soundscape

- Develop a new AI-based toolbox to reduce ship noise impact on marine mammals
- Can we predict the evolution of acoustics in ocean environment over long horizons
 - <u>Physics-based machine learning</u> (PBML) algorithms using simulation and measurement datasets
- Demonstrate the applicability of adaptive operational strategy using PBML toolkit
 - ► Realistic ocean bathymetry
 - Ship voyage parameters

Transmission loss
$$\left(-20 \log \frac{p}{p_0}\right)$$
 of acoustic wavefront

Data-Driven Learning of Underwater Radiated Noise

Learning from data

- Agnostic to how data is obtained
- Data usually abundantly available
- □ Challenges
 - Accuracy: generalized prediction
 - Scalability: dimensionality reduction
 - Interpretability
- Proposed solution: Convolutional Recurrent Autoencoder Network (CRAN)
 - Convolutional autoencoders + recurrent neural network
 - Sequence-to-sequence prediction

Wrik et al., JASA 2022

Data-Driven Learning of Ocean Acoustics

Depth-dependent ocean environment

- ► Losses due to geometric spreading, reflection from bottom and top
- Complex wave interference
- Several parameters: ocean bed, source depth, water temperature and salinity

Training data

Transmission loss for randomly sampled source depths

- □ CRAN prediction of far-field TL
 - Source depths outside training range

CRAN Generalization Capability

Far-field sound propagation: depth-dependent sources

□ Acoustic wavefront patterns predicted accurately

CRAN for Varying Bathymetry

□ Complex wave interference patterns

- Large spatial dimensions
- Computationally expensive

CRAN Prediction for Varying Bathymetry

SSIM = 90%

Case Study: Adaptive URN Management

Intelligent ship operation

- Physics-based machine learning for underwater radiated noise
- Multi-objective optimization of ship noise and fuel consumption

4 6

Summary

Propeller modeling with cavitation and hydro-acoustics

- Established validation and best practices for in-house CFD modeling
- Explored physical mechanisms and mitigation technologies for nearfield noise suppression
- Demonstrated physics-based machine learning toolkit with adaptive speed optimization

Simflow

- AI-driven slowdown and distancing measures can be more effective
- Optimal combination of technological measures with URN management

Ongoing development:

Features

Validated 3D

multiphysics solver

Benefits

Validated 3D data-

driven ML solver

SimflowAl

- Real-time noise reduction, efficiency improvement
- Intelligent ship path planning

Thank you for your attention

Rajeev K. Jaiman rjaiman@mech.ubc.ca https://cml.mech.ubc.ca/)

