

Task 7/8 Working Group – Session 2 July 2022

Project Summary

This project will investigate the feasibility, benefits and risks of the use of natural gas to replace some or all of the current diesel and heavy fuel oil (HFO) used in the Canadian Arctic, exploring if and how LNG fuel can provide a solution to:

- Reducing or eliminating the risk of oil spills in the Arctic
- Reducing black carbon emissions
- Eliminating sulphur emissions
- Reducing greenhouse gas emissions
- Reducing the health and pollution risk to Arctic communities
- Meeting the 2050 net zero greening of government targets

Who is participating?

- Original Equipment Manufacturers marine engines and fuel systems
- Marine consultants
- Natural gas and LNG consultants
- Ship operators
- Gaseous fuels providers
- Federal Departments and Agencies
- Provincial and Territorial governments
- Arctic Communities and Economic interests
- Indigenous organizations
- Environmental non-governmental organizations

Perspectives Sharing Workshop

Tuesday, January 25 & Wednesday, January 26, 2022

A workshop aimed at sharing perspectives on the feasibility, benefits and risks of the use of natural gas (in the form of Liquefied Natural Gas or LNG) to replace some or all of the current diesel and heavy fuel oil (HFO) used in the Canadian Arctic.

Review presentations here:

https://clearseas.org/en/research_project/arctic-marine-natural-gas-supply-chain-supply/

Featuring Special Guest Speakers including:

Lisa Koperqualuk

VP of International Affairs, Inuit Circumpolar Council Canada

Bryan Comer

Marine Program Lead, International Council on Clean Transportation

Task Teams

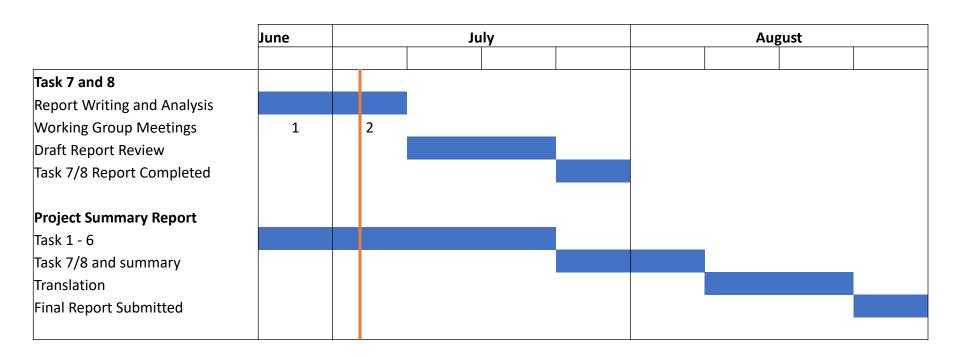
Task 1: Technology Readiness

Task 2: Economic Aspects and Benefits

Task 3: Environmental Benefits and Risks

Task 4: Infrastructure Options

Task 5: Human Resources


Task 6: Regulatory Challenges

Task 7: Implementation Scenarios – will develop general scenarios and case studies to build on materials developed in earlier tasks to provide a picture of the supply chain as well as vessels that could be deployed in the Arctic region.

Task 8: Benefits to Canada's
Arctic — will outline the economic
and environmental benefits both to
Canada and to Arctic communities
that are likely to result from a shift
to the use of natural gas in the
marine sector, other industries and
for community use.

Task 9: Communications – Mobilizing and communicating results

Arctic LNG Project Timeline

Task 7 / 8 Outlines

Task 7: Implementation Scenarios

- Arctic Shipping Fuel Use and Emissions
- 2. Vessel Implementation Scenarios
 - Domestic commercial fleet
 - International shipping
 - Government
- 3. Summary of Emissions Impact
- 4. Supply Chain Options

Task 8: Benefits to Canada's Arctic

- 1. Environmental Impacts
 - Air pollution and health
 - Greenhouse gas
 - CO2 and Black Carbon reduction
 - 2. Risk from methane
 - LPDF engines
 - Venting
 - Oil Spill Risk Reduction
- 2. Economic Impacts
 - Goods transportation cost
 - LNG sales
 - Infrastructure investment
 - Ship conversion/construction
 - Electricity cost

Task 8: Environmental Impacts

Air pollution and health

Emissions from ship engines and diesel engines used for power generation contain pollutants that are harmful to human health and the environment

- NO_x emissions due to combustion
 - Ships: already subject to Tier II limits
 - no reduction for low methane HPDF engines
 - Significant reduction for LPDF engines (to Tier III standards) but with high methane emissions
 - Power generation gas generators Tier 2 diesel (2 g/bhphr) vs. LPSI gas
- SO_x emissions from sulphur in fuel
 - IMO 2020 standard reduced sulphur in fuel from c. 2.5% to 0.5%
 - HFO ban will effectively further reduce to 0.1% some operators already voluntarily complying
 - LNG would almost eliminate sulphur
- Particulate Matter (PM) from combustion of fuel
 - Sulphur reductions also reduce PM
- _{05.07.2022 | Page 8} PM further reduced if LNG used

Task 8: Environmental Impacts

Greenhouse gas impact of ships switching to LNG fuel (fossil source)

- 1. Reduction in CO_2 emissions by 21 30%
- 2. Reduction in Black Carbon emissions by 95%. Note that HFO ban will achieve c. 70% reduction by switching to diesel from HFO
- 3. Increase in methane emissions
 - LPDF engines are the main source
 - Also venting of storage tanks needs to be managed
- 4. CO2-equivalent reductions are possible (100 year GWP)
 - 25% if best HPDF engines are used
 - Small improvement if more common LPDF engines are used. No short term benefit.
- 5. Lifecycle CO2-equivalent impact (taking into account upstream emissions) analysis from Task 3 confirms these results

Greenhouse gas impact of ships switching to bioLNG fuel (biogas)

- 1. Reduced lifecycle CO2-equivalent emissions by up to 90% external sources
- 2. Limitations on availability of sustainable feedstock

Task 8: Environmental Impacts

Oil Spill Risk Reduction

- 1. Frequency of oil spills from Task 3
- 2. Risk reduction due to HFO ban including discussion on limitations
- 3. Risks presented by diesel spills
- 4. Risk reduction due to LNG

Task 8: Economic Impacts

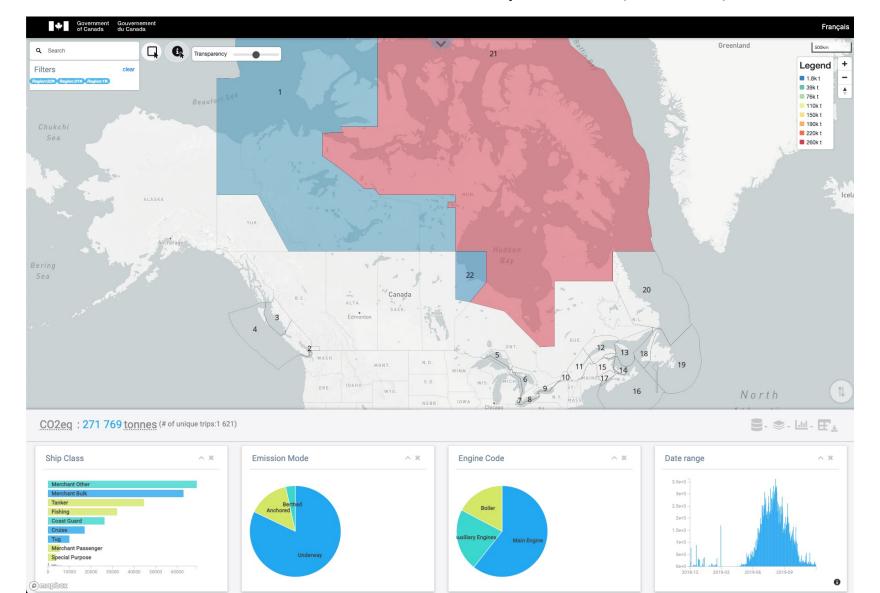
- 1. Goods transportation cost
 - HFO ban increase -> diesel fuel required
 - LNG would eliminate increase \$/sea lift and \$ per household
- 2. LNG sales (tonnes LNG x \$/tonne)

Quebec: Domestic fleet + Arctic fleet + Arctic Power Generation Arctic: Arctic fleet bunkering business

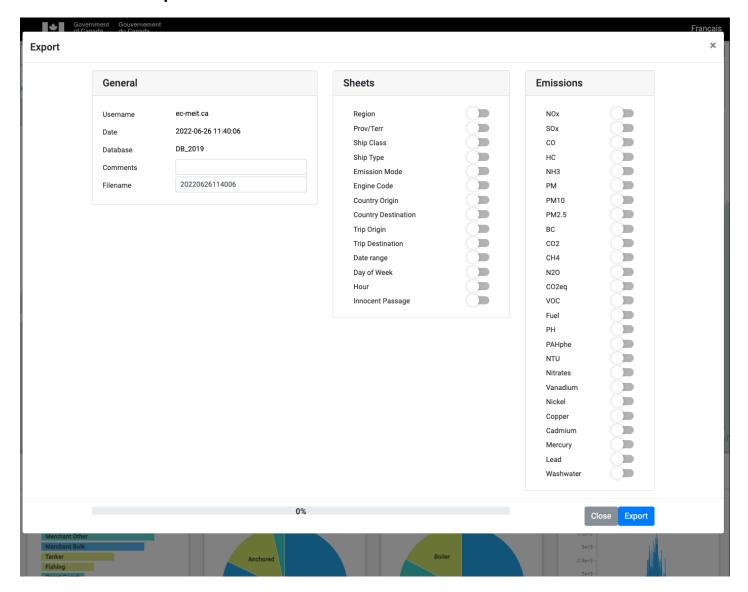
3. Infrastructure investment

Quebec LNG plant – previous proposals as proxy Quebec LNG jetty and LNG bunker barge – BC examples as proxy Arctic LNG storage – Task 4 analysis LNG carrier – Task 2 analysis

4. Ship conversion/construction


Fleet size (Task 7) x conversion cost (Task 2)
Fleet size (Task 7) x incremental new construction cost (Task 2)

5. Electricity cost
Wholesale Price of Diesel (NRCan) vs. Landed cost of LNG (Task 4)



Working Group 1 Content

Marine Emissions Inventory Tool (MEIT)

Data Export



DRAFT – subject to change

Arctic Shipping Emissions in Context

2019 CO₂e Emissions*

Region	Co2e [GT]
Pacific	3.53
Atlantic	3.48
St. Lawrence	0.82
Great Lakes	0.60
Arctic	0.27
Total	8.7

Other values for comparison

Canada Domestic Marine Transport 2019: 4.4 GT

NU Territory 2019: 0.7 GT

Arctic Diesel Power Gen 2017: 0.9 GT

^{*100-}year IPCC GWP AR4 - excludes Black Carbon

Arctic Shipping

2019 MEIT Raw Data Extract

Туре	nox	sox	со	hc	pm	pm10	pm25	bc	co2	ch4	n2o	co2e	fuel_cons	Arctic LNG Study
Coast Guard														
Icebreaker	559.0	0.2	19.0	23.5	5.8	5.6	5.1	2.8	24,515.9	0.4	1.2	24,882.0	7,646,872,000	CCG Icebreaker
Coast Guard Rescue	1.5	0.0	0.1	0.1	0.0	0.0	0.0	0.0	89.2	0.0	0.0	90.6	27,817,370	Other
Coast Guard Supply	3.7	0.0	0.2	0.2	0.0	0.0	0.0	0.0	233.3	0.0	0.0	237.1	72,779,710	Other
Coast Guard Tender	17.9	0.0	1.0	0.9	0.2	0.2	0.2	0.1	1,066.1	0.0	0.1	1,084.4	332,518,400	Other
Cruise	285.9	158.3	10.5	9.9	18.8	18.0	16.6	1.7	16,807.6	0.2	0.8	17,048.5	5,397,440,000	Cruise
Factory Ship	105.4	0.1	4.9	4.1	0.3	0.3	0.3	0.1	5,581.6	0.1	0.3	5,681.1	1,740,972,000	Fishing Vessel
Fishing Vessel	293.2	0.2	10.7	9.3	1.5	1.4	1.3	0.7	20,172.3	0.2	1.1	20,492.3	6,292,056,000	Fishing Vessel
Merchant (Tanker)	274.1	160.6	9.3	9.6	15.7	15.1	13.9	0.4	12,131.0	0.2	0.6	12,328.5	3,895,624,000	Tanker
Merchant Bulk	1,416.8	866.9	53.1	59.0	107.0	102.7	94.5	2.8	61,901.6	1.0	3.4	62,936.9	19,878,480,000	Bulk Carrier
Merchant Chemical	66.9	45.4	2.2	2.1	3.2	3.0	2.8	0.1	3,263.4	0.0	0.2	3,314.2	1,047,987,000	Tanker
Merchant Chemical/Oil														
Products Tanker	318.5	230.3	12.1	11.9	21.5	20.6	19.0	0.8	15,999.1	0.2	0.9	16,259.2	5,137,790,000	Tanker
Merchant General	1,369.7	967.6	54.3	51.7	95.7	91.9	84.5	3.9	67,899.6	1.0	3.8	69,053.3	21,804,640,000	General Cargo
Merchant Ore/Bulk/Oil	205.3	171.9	8.3	7.1	9.5	9.1	8.4	0.8	12,479.8	0.2	0.6	12,671.5	4,007,629,000	I/B Bulk Carrier
Merchant Passenger	100.9	0.1	4.0	4.6	1.4	1.3	1.2	0.3	5,553.1	0.1	0.3	5,637.7	1,732,097,000	Other
Special Purpose														
Research VSL	4.9	0.0	0.3	0.3	0.1	0.1	0.1	0.0	297.3	0.0	0.0	302.3	92,737,070	Other
Special Purpose Supply														
VSL	52.6	0.0	3.2	3.3	0.9	0.9	0.8	0.3	3,404.4	0.1	0.2	3,462.0	1,061,869,000	Other
Trawler	112.8	0.1	5.4	5.1	0.9	0.8	0.8	0.3	5,839.2	0.1	0.3	5,942.7	1,821,349,000	Fishing Vessel
Tug	87.8	0.1	5.1	5.8	1.4	1.3	1.2	0.8	5,660.0	0.1	0.3	5,748.5	1,765,444,000	Tug
Tug Harbour	42.1	0.0	2.1	2.6	0.6	0.6	0.6	0.3	2,398.4	0.0	0.1	2,435.9	748,095,300	Tug
Tug Ocean	27.1	0.0	1.2	1.3	0.4	0.4	0.3	0.1	1,481.8	0.0	0.1	1,505.6	462,191,400	Tug
Tug Supply	5.3	0.0	0.2	0.2	0.1	0.1	0.1	0.0	260.8	0.0	0.0	264.3	81,333,810	Tug
Warship Surface	8.5	0.0	0.3	0.3	0.1	0.1	0.1	0.0	384.8	0.0	0.0	390.8	120,039,400	Other
	5,359.8	2,601.6	207.3	213.0	284.9	273.5	251.6	16.5	267,420.2	4.0	14.3	271,769.4	85,167,761,460	

DRAFT – subject to change

Arctic Shipping

2019 MEIT Summary

Greenhouse Gas	s Emissions						1
Row Labels	Sum of bc	Sum of co2	Sum of ch4	Sum of n2o	Sum of co2e	Sum of fuel_cons	
Bulk Carrier	2.8	61,901.6	1.0	3.4	62,937	19,878,480,000	Δ
General Cargo	3.9	67,899.6	1.0	3.8	69,053	21,804,640,000	Α
Tanker	1.4	31,393.5	0.4	1.7	31,902	10,081,401,000	Α
I/B Bulk Carrier	0.8	12,479.8	0.2	0.6	12,671	4,007,629,000	A
Fishing Vessel	1.1	31,593.1	0.4	1.7	32,116	9,854,377,000	
CCG Icebreaker	2.8	24,515.9	0.4	1.2	24,882	7,646,872,000	A
Cruise	1.7	16,807.6	0.2	0.8	17,048	5,397,440,000	A
Tug	1.3	9,801.0	0.2	0.5	9,954	3,057,064,510	
Other	0.8	11,028.2	0.2	0.6	11,205	3,439,857,950	
Grand Total	17	267,420	4	14.3	271,769	85,167,761,460	

Arctic Shipping

2010 – 2018 Unique Ship Counts Raw Data

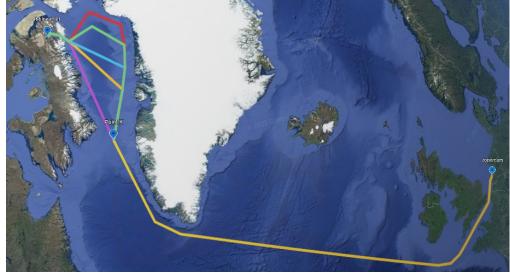
Unique Ship Counts within NORDREG										
Vessel Type	2010	2011	2012	2013	2014	2015	2016	2017	2018	Arctic LNG Category
Bulk Carriers	23	19	18	24	21	20	21	27	36	Bulk Carrier + I/B Bulk Carrier
Fishing Vessels	24	25	23	22	24	24	21	30	32	Fishing Vessel
General Cargo	15	12	11	11	13	14	16	19	17	General Cargo
Government Vessels and Icebreakers	20	23	23	23	22	22	20	28	24	Other +. CCG Icebreaker
Oil/Gas Exploration/Exploitation		1	1							Other
Passenger Ships	11	8	6	10	9	11	12	12	10	Cruise
Pleasure Crafts	11	20	24	26	31	23	23	30	18	Other
Tanker Ships	13	15	11	11	11	10	11	13	14	Tanker
Tug/Barge	23	20	19	20	13	14	15	20	18	Tug
Grand Total	140	143	136	147	144	138	139	179	169	

Source: Environment, Society and Policy Group – University of Ottawa

DRAFT – subject to change

Arctic Shipping

Unique Ship Count Summary


Vessel Type	Number of Vessels in 2018	Fuel Consumed in Arctic in 2019 [millions of tonnes]	
Bulk Carriers	33	19.9	Α7
General Cargo	17	21.8	A2
Tanker	14	10.1	А3
I/B Bulk Carrier*	3	4.0	Α6
Fishing Vessel	32	9.9	
CCG Icebreaker*	7	7.6	A1
Cruise	10	5.4	Α4
Tug	18	3.1	
Other	35	3.4	
Total	169	85.2	

Source: ESPG, MEIT
* Industry data

Particulars/Profile-Icegoing Bulker

Vessel Parti	culars	A7
		Icegoing
Cargo		Bulker
Length	(m)	225.00
Breadth	(m)	32.00
Depth	(m)	20.00
Draft	(m)	14.50
Gross Tonnage	(MT)	40000
Deadweight	(MT)	75000
Speed	(kts)	13
Power	(kW)	14,500
Passenger Cap		n/a
Crew		20
Ice Class		PC 7
		Slow
Engine Type		speed
Fuel tank		
volume	(m³)	2500

Implementation Scenario

Bulk Carriers

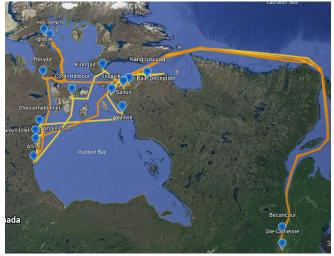
Scenario: International bulk carriers burn LNG fuel instead of MDO

because of HFO ban

Reference Case A7

Emissions Impact = MEIT (Region) \times Factors from Task 3

Economic Impact = # vessels x Annual Savings \$


Investment = # vessels x Conversion Cost

Fuel Demand = # vessels x consumption -> Europe

Particulars/Profile – General Cargo

Vessel Partic	ulars	A2
		General
Cargo		Cargo
Length	(m)	140.00
Breadth	(m)	21.00
Draft	(m)	8.00
Gross Tonnage	(MT)	10000
Deadweight	(MT)	15000
Speed	(kts)	15
Power	(kW)	6,000
Passenger Cap		n/a
Crew		25
Ice Class		PC 7
Engine Type		Slow Speed
Fuel tank volume	(m³)	550

Implementation Scenario

General Cargo

Scenario: Arctic sealift ships replaced with LNG-powered at replacement Reference Case A2

Emissions Impact = MEIT (Region) \times Factors from Task 3

Economic Impact = # vessels x Annual Savings \$

Investment = # vessels x upgrade cost

Fuel Demand = # vessels x consumption -> QC

Notes:

- MFIT assumes HFO
- Methane emissions if MS-LPDF engines used instead = limited benefit
- No regional bunkering solution currently in QC

Particulars/Profile - Tanker

Vessel Partic	Vessel Particulars			
Cargo		Tanker		
Length	(m)	135.00		
Breadth	(m)	23.50		
Draft	(m)	8.00		
Gross Tonnage	(MT)	12000		
Deadweight	(MT)	15000		
Speed	(kts)	14		
Power	(kW)	5,500		
Passenger Cap		n/a		
Crew		20		
Ice Class		PC 7		
Engine Type		Slow Speed		
Fuel tank volume	(m³)	600		

Implementation Scenario

Tanker

Scenario: Arctic sealift ships replaced with LNG-powered at replacement Reference Case A3

Emissions Impact = MEIT (Region) \times Factors from Task 3

Economic Impact = # vessels x Annual Savings \$

Investment = # vessels x upgrade cost

Fuel Demand = # vessels x consumption -> QC

Notes:

- MFIT assumes HFO
- Methane emissions if MS-LPDF engines used instead = limited benefit
- No regional bunkering solution currently in QC

Particulars/Profile-I/B Bulker

Vessel Parti	Vessel Particulars		
Cargo		I/B Bulker	
Length	(m)	190.00	
Breadth	(m)	26.50	
Depth	(m)	18.00	
Draft	(m)	12.00	
Gross			
Tonnage	(MT)	22000	
Deadweight	(MT)	32000	
Speed	(kts)	13	
Power	(kW)	22,000	
Passenger			
Сар		n/a	
Crew		20	
Ice Class		PC 4	
Engine Type		Slow speed	
Fuel tank			
volume	(m³)	2200	

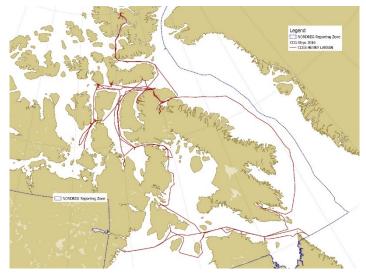
Implementation Scenario

Icebreaking Bulk Carriers

Reference Cast A6

Emissions Impact = MEIT (Region) x Factors from Task 3

Economic Impact = # vessels x Annual Savings \$


Investment = # vessels x Conversion Cost

Fuel Demand = # vessels x consumption -> QC

Particulars/Profile – CCG Icbreaker

Vessel Partic	A1	
Cargo		As required
Length	(m)	110.00
Breadth	(m)	23.00
Draft	(m)	8.00
Gross Tonnage	(MT)	n/a
Deadweight	(MT)	3000
Speed	(kts)	16
Power	(kW)	20,000
Passenger Cap		n/a
Crew		50
Ice Class		PC 3
		Medium
Engine Type		speed, DE
Fuel tank volume	(m³)	1500

Implementation Scenario

CCG Icebreaker

Scenario: New CCG icebreakers are built with LNG power instead of diesel

Reference Case A1

Emissions Impact = MEIT (Region) x Factors from Task 3

Economic Impact = MT Fuel from MEIT x (ULSD – LNG Price from Task 4)

Investment = Unable to calculate

Fuel Demand = MEIT -> Arctic

Notes

- Diesel-electric configuration limits choice of engines to MS-LPDF => high methane emissions
- Range requirement necessitates refuelling in Arctic

Particulars/Profile- Cruise Ship

Vessel Partic	Vessel Particulars			
		Cruise		
Cargo		Ship		
Length	(m)	138.00		
Breadth	(m)	22.00		
Draft	(m)	5.60		
Gross Tonnage	(MT)	15500		
Speed	(kts)	16		
Power	(kW)	11,200		
Passenger Cap		200		
Crew		175		
Ice Class		PC 6		
		Medium		
Engine Type		speed DE		

Implementation Scenario

Cruise Ship

Canadian-flagged LNG-fuelled cruise ships originating in Iqaluit replace current cruise fleet

Reference Case A4

Emissions Impact = MEIT (Region) x Factors from Task 3

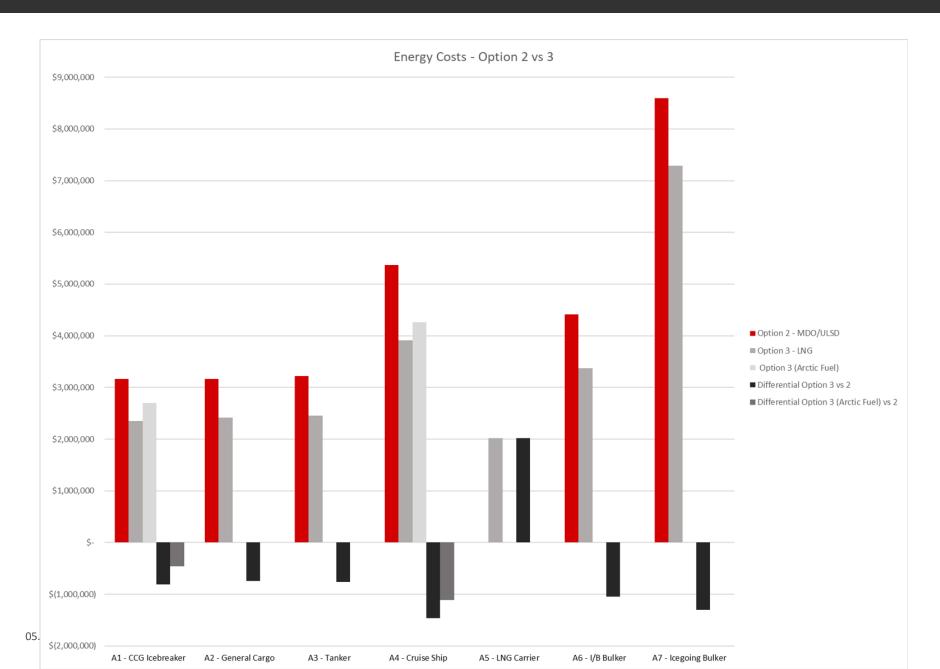
Economic Impact = \$ value of fuel purchased in Arctic: MEIT fuel x Task 4 cost \$

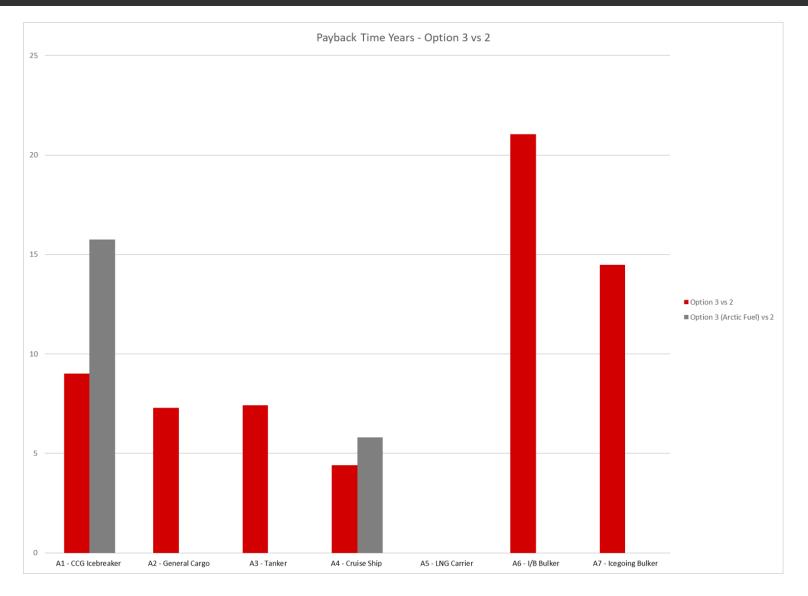
Investment = # vessels x upgrade cost

Fuel Demand = MEIT forecast -> Arctic

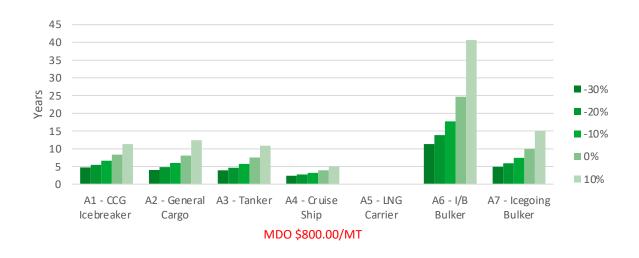
Notes:

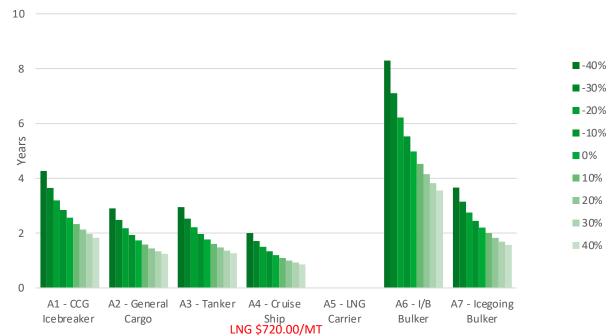
- Scenario requires in-region LNG
- Diesel-electric propulsion necessitates choice of LPDF emissions -> CH4 issues


Fuel Cost


Fuel	Port	Current (%/MT)
MDO	Montreal	\$800.00
ULSD (0.01% S)	Montreal	\$888.00
HFO (0.5%)	Montreal	\$559.00
HFO (0.5%)	Rotterdam	\$488.00
LNG	Montreal	\$720.00
LNG	Rotterdam	\$801.37

LNG Iqaluit \$941.90 (Task 4 Scenario 1)


Annual Fuel Cost DRAFT - subject to change



Sensitivity Analyses

Greenhouse Gas Impact

Impact on CO2 Emissions of Implementation Sceanrios [tonnes]							
		ULSD/MDO		LNG			
Vessel Type	Baseline	Change	Percent	Change	Percent		
Bulk Carrier	61,901.6	(1,698.1)	-3%	(16,094.9)	-29%		
General Cargo	67,899.6	(1,654.7)	-2%	(18,248.6)	-29%		
Tanker	31,393.5	(724.9)	-2%	(8,561.6)	-30%		
I/B Bulk Carrier	12,479.8	(354.1)	-3%	(3,209.9)	-29%		
CCG Icebreaker	24,515.9	-	-	(5,238.5)	-21%		
Cruise	16,807.6	(433.9)	-3%	(3,498.7)	-21%		
Total	214,998.0	(4,865.7)		(54,852.3)			
Impact on BC Emissions of Implementation Sceanrios [tonnes]							
		ULSD/MDO		LNG			
Vessel Type	Baseline	Change	Percent	Change	Percent		
Bulk Carrier	2.8	(2.1)	-74%	(0.6)	-94%		
General Cargo	3.9	(2.5)	-63%	(1.2)	-94%		
Tanker	1.4	(0.8)	-59%	(0.5)	-95%		
I/B Bulk Carrier	0.8	(0.6)	-77%	(0.1)	-95%		
CCG Icebreaker	2.8	-	-	(2.6)	-91%		
Cruise	2.8	(1.9)	-68%	(0.8)	-95%		
Total	14.5	(7.9)		(5.8)			
Impact on CH4 E	missions of Im	plementation Scea	nrios [tonnes]				
		LNG					
Vessel Type	Baseline	Change	Percent				
Bulk Carrier	1.0	19.4	1951%				
General Cargo	1.0	18.7	1887%				
Tanker	0.4	8.1	1903%				
I/B Bulk Carrier	0.2	2.9	1945%				
CCG Icebreaker	0.4	273.3	62391%				
Cruise	0.2	98.0	52255%				
Total	3.2	420.5					

- CO₂ Reduced
- Black Carbon Reduced
- Methane increased worse with LPDF engines
- N2O reduced (not calculated)

DRAFT – subject to change

Greenhouse Gas Impact

Impact of CO2-e GWP 100 Emissions of Implementation Scenarios [tonnes]						
Vessel Type	Baseline	Change	Percent			
Bulk Carrier	64,459.8	(16,020.8)	-25%			
General Cargo	71,456.1	(18,779.9)	-26%			
Tanker	32,641.8	(8,757.5)	-27%			
I/B Bulk Carrier	13,223.2	(3,250.1)	-25%			
CCG Icebreaker	27,008.1	663.8	2%			
Cruise	18,336.6	(1,315.3)	-7%			
Total	227,125.5	(47,459.9)	-21%			

- In region emissions only Task 3 includes lifecycle
- Includes Black Carbon
- Excludes N₂O
- Requires use of HPDF engines to limit methane

Air Pollution Impact

missions of Im	plementation S	cenario		
Baseline	Change	Percent		
1,416.8	-	0%		
1,369.7	-	0%		
659.4	-	0%		
205.3	-	0%		
559.0	(490.5)	-88%		
285.9	(250.2)	-88%		
4,496.1	(740.6)			
missions of Imp		ceanrios after II		1
				Percent
	,			-99%
			, ,	-98%
436.2	(336.8)	-77%		-98%
171.9	(138.5)	-81%		-99%
0.2	-	-		-81%
158.3	(125.8)	-79%	(30.5)	-99%
2,601.1	(2,069.8)		(496.7)	
			40.0000 11150.0	
nissions of imp		eanrios after in		
Raceline	·	Percent		Percent
				-99%
				-99%
40.4				-100%
9.5	, ,			-99%
5.8	-	-	(5.1)	-88%
18.8	(13.7)	-73%	(4.9)	-99%
	## 1,416.8 1,416.8 1,369.7 659.4 205.3 559.0 285.9 4,496.1 ## 100.0	Change	1,416.8	Change

- NOx reduction only from high methane LPDF engines
- Big SOx
 reduction from
 move to Ultra Low Sulphur
 fuel due to
 HFO ban
- PM reduced

DRAFT – subject to change

Supply Chain Options

Implementation Scenarios Fuel Demand	Total LNG Required Annually (tonnes)				
	LNG Fuel Per Season (tonnes)	Number of Vessels	Europe	Quebec	Arctic
Bulk Carriers	2,761	33	91,113		
General Cargo	440	17		7,480	
Tanker	434	14		6,076	
I/B Bulk Carrier*	4,013	3		12,039	
CCG Icebreaker*	3,171	7		11,099	11,099
Cruise	1,582	10			15,820
LNG Carrier	440	1		440	
Total		85	91,113	37,134	26,919

Task 7 / 8 Outlines

Task 7: Implementation Scenarios

- Arctic Shipping Fuel Use and Emissions
- 2. Vessel Implementation Scenarios
 - Domestic commercial fleet
 - International shipping
 - Government
- 3. Summary of Emissions Impact
- 4. Supply Chain Options

Task 8: Benefits to Canada's Arctic

- 1. Environmental Impacts
 - Air pollution and health
 - Greenhouse gas
 - CO2 and Black Carbon reduction
 - 2. Risk from methane
 - LPDF engines
 - Venting
 - Oil Spill Risk Reduction
- 2. Economic Impacts
 - Goods transportation cost
 - LNG sales
 - Infrastructure investment
 - Ship conversion/construction
 - Electricity cost