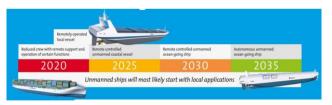
Risk-based analysis and design for remote pilotage operations in Finnish fairways

D.Sc. Osiris A. Valdez Banda (Assistant Professor)
Research Group on Safety and Efficient Marine
and Ship Systems



Smart shipping-related research in Finland over the last 8 years

Enablers and Concepts for Automated Maritime Solutions

DIMECC Program SEA4VALUE - Fairway

Risks and opportunities of Enablers digital solutions and in sustainable Concepts for transition to Automated carbon-neutral Solutions marine logistics

Advanced **Autonomous** Waterborne **Applications** Initiative (AAWA)

Design Smart for City Value **Ferries** (D4V) (Älyvesi)

Sea for Value (S4V)

Autonomous Shipping Education Network (AutoMARE)

(ECAMARIS) (GYROSCOPE)

Focus: Development of technologies that enable autonomous ship operations **Scope:** Ships and the autonomous maritime ecosystem (e.g. smart fairways)

2016

2017

2018

2020

2021

2023

2024

Sea for Value Fairway program (2020-23)

Remote pilotage in an intelligent fairway

Industrial partner links:

Research partner links:

Funding partners:

Ship pilotage

When a ship arrives in **congested or shallow areas**, experienced navigators on local waters, known as pilots, go onboard the ship to provide expert navigational guidance.

A lower number of accidents has been recorded in ships with pilots compared to ships without pilots.

Source: Matthew Barra

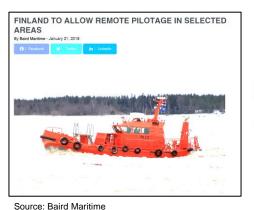
Source: Safety4Sea

Challenges

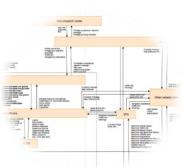
- Complex and critical operation as it occurs in congested areas with high collision and grounding risks.
- Risky for pilots as several accidents occur when pilots are getting on and off the ship.
- Pilotage services invest a lot of resources in providing this service.

Sandy Hook Pilot Dies in Boarding Accident


Marine Pilot Survives Pilot Ladder Accident at Port of Durban



BY THE MARITIME EXECUTIVE 04-29-2020 01:20:32



Remote pilotage: a novel form of pilotage

- Instead of pilots boarding the ship, in remote pilotage, the remote pilot will support the ship crew remotely from a shore control center.
- ➤ The Finnish pilotage act was amended in 2019 and again in 2023 to allow remote pilotage services in Finland.

Additional challenges: and requirement:

- Embedded software and advanced new technology (prone to software and design errors).
- Higher number of interactions between components (which can result in unsafe interactions).
- The Pilotage act specifies that a comprehensive risk management study is necessary to enable remote pilotage services in Finland.

Aim of the Risk Analysis of RP

 Develop a description of the system (concept of operation) to understand what are the system components and how it functions

- Conduct risk management of Remote pilotage operation using Formal Safety Assessment Framework
- Integrate suitable methods for executing each step of the FSA

Initial Formal Safety Assessment

Scope: Intelligent fairway and remote piloting operations

Step 1System
description

System requirements
System components
System design solution
Hazard identification

Step 2Risk analysis

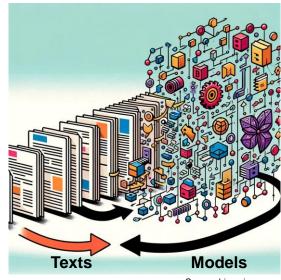
Risk criteria Risk estimation Risk evaluation

Step 3
Risk control options

Risk mitigation actions Feasibility study Initial selection of RCOs

Step 4 CBA Implementation cost Economical benefit Evaluation of mitigation capability

Step 5 SRMS Management strategy Stakeholder roles and responsibilities Documentation

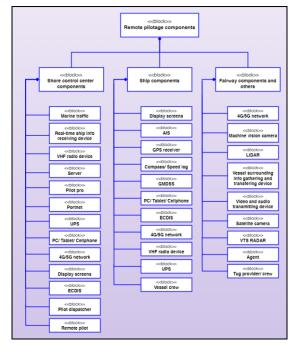

Step 1 Remote pilotage system description

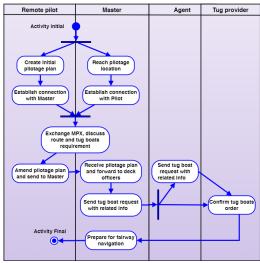
From text-based system description to model-based system description (1)

- Formal Safety Assessment based studies has been criticized for their ambiguous system description.
- ➤ Model-based System Engineering can reduce this ambiguity by utilizing models and minimizing the texts.
- ➤ Challenging to adopt because various modeling methods exist.
- ➤ The suitability of modeling methods depends on:
 - The system scope: What kind of system is being considered and how complex is it?
 - The purpose of the modeling What is it being used for?
 - The end-users Who will be using the models?

FSA steps

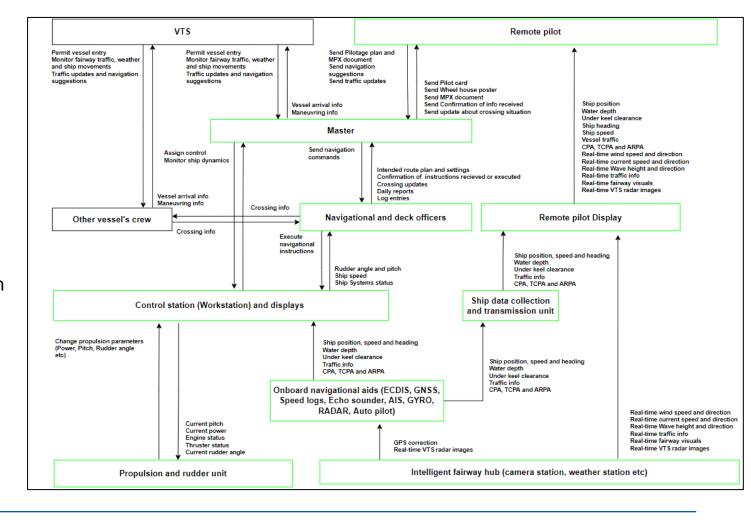
Step 0: Goal, scope and system definition




Source: bing.ai

From text-based system description to model-based system description (2)

- ➤ A decision-making framework for selecting a suitable modeling language is provided.
 - ➤ End-users are involved throughout the selection process.
 - ➤ Different comparison criteria are applied depending on the modeling purpose and the type of system.
- ➤ The framework was applied to remote pilotage and the System Modeling Language was selected.
- ➤ Diagrams describing the remote pilotage operation were developed.



Step 2-4 Remote pilotage risk management

Hazard analysis

 Advanced hazard analysis method (STPA) for complex socio-technical systems, which considers safety a dynamic control problem rather than a failure prevention problem.

 Analyze all interactions in RPO to identify unsafe situations

Summary of RPO Hazard analysis (1)

-Six types of losses considered

L-1: Loss of life or injury to people

L-2: Loss of or damage of own ship and cargo

L-3: Loss of or damage of external objects

L-4: Loss of mission

L-5: Loss of environment

L-6: Loss of customer satisfaction

-Five System-level hazards considered

H-1: Ship violate minimum separation standards in route (L-1, L-2, L-3, L-4, L-5, L-6)

H-2: Ship does not maintain safe under keel clearance (L-2, L-4, L-5, L-6)

H-3: Ship leaves designated route (L-1, L-2, L-3, L-4, L-5, L-6)

H-4: Lack of communication initiation between remote pilotage stakeholders during remote pilotage (L-4, L-6)

H-5: Lack of information sharing between remote pilotage stakeholders during remote pilotage (L-1, L-2, L-3, L-4, L-5, L-6)

-More than 150 Unsafe actions identified

UCA1: Remote pilot does not initiate the communication with master prior to the pilotage. (H-4, H-5)

UCA12: Remote pilot provides wrong, unclear or missing info in pilotage plan and is followed by the vessel crew (H-1, H-2, H-3)

UCA103: Navigational crew provides rudder angle too late during pilotage operation (H-1, H-3)

UCA104: Navigational crew provides rudder angle via AP without providing correct settings to AP during pilotage (H-1, H3)

•••

Summary of RPO Hazard analysis (2)

800+ unsafe scenarios were identified, which were group into 3 major categories and
 50+ sub-categories:

Category 1 (C1): Issues related to Hardware and Software

C1.1 - VHF failure

C1.2 – Cellphone / Tablet

Category 2 (C2): Issues related to Human factors

C_{2.1}- Distraction

C2.2- Lack of skills/competence

Category 3 (C3): Issues related to incomplete, incorrect, unclear or lack of data

C3.1- Issues with data related to ship info

C3.3- Issues with data related to ship dynamics

UCA1: Remote pilot does not initiate the communication with master prior to the pilotage. (H-4, H-5)

Causal Scenario 1 (S1): The remote pilot does not initiate the communication because he doesn't receive the required ship information to initiate the communication from pilot dispatch center (C3)

Causal Scenario 2 (S2): The remote pilot does not initiate the communication because of fatigue due to work overload (C2)

Safety related to equipment

GYRO	RADAR	AIS	GPS
Engines	Fairway infrastructures	Lights onboard	Cloud services
Displays	Sound signaling device	Integrated alarm system	Communication device
Autopilot device	ECHO sounder	ECDIS	Rudder and helm
Data transmission unit	Networking equipment	Thruster and propulsion unit	

© Canstockphoto

Safety/Security related to information exchange

Ship dynamic data	Ship info	Fairway traffic info
Ship systems info	Weather info	Water depth info
Communicati ons info	Quay info	Tugboat info
Crossing info		

Safety related to human factors

Lack of skills /competence	Fatigue	Stress	Distraction
High level of task complexity	Lack of trust	Lack of checklists/ guidelines	Lack of standard phrases
Lack of seamanship	Language barrier	Wrong assumption	Poor situational awareness

© dreamstime

© shutterstock

Safety related to human factors

Lack of skills /competence	Fatigue	Stress	Distraction
High level of task complexity	Lack of trust	Lack of checklists/ guidelines	Lack of standard phrases
Lack of seamanship	Language barrier	Wrong assumption	Poor situational awareness

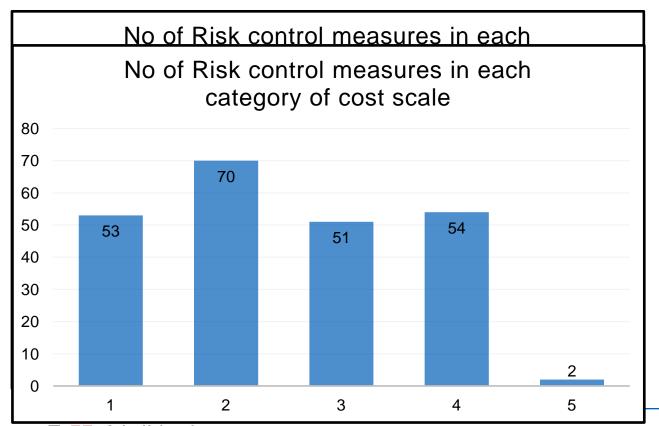
Skills related to remote pilot: Navigational suggestions, pilotage planning, establishing connection and sending info, suggesting emergency procedures, communication skills, situational awareness, handling new equipment e.t.c.

Skills related to Master and navigation crew: Vessel navigation, communication skills, executing emergency procedures e.t.c

Risk control measures:

- Selection of ship and fairway
- Simulation practices for remote pilotage
- Experienced and skilled pilots / crew
- Half-Duplex or Duplex communication
- · Certification of Remote pilots and its validity
- Training for remote pilots and ship crew.
- Emergency procedures for remote pilotage (changing to conventional pilotage in case of major issues)
- Increased situational awareness (Installation of more camera stations in fairway, assess other technologies)
-

Risk matrix

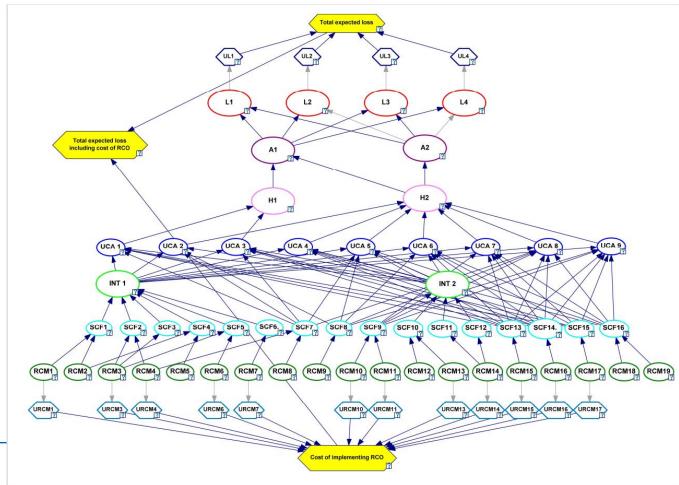

		Severity -			
	Risk matrix	Minor	Significant	Severe	Catastrophic
Frequency	Extremely remote	0	1	0	2
	Remote	6	10	7	2
	Reasonably probable	1	0	13	2
	Frequent	0	1	3	1

Estimated risk levels

Low risk level – 18 categories Medium risk level – 9 categories High risk level – 22 categories

- The estimated risk levels are before the implementation of risk control measures
- The successful implementation of risk control measures is expected to lower the risk levels

Preliminary Cost-benefit analysis of Risk Control measures


Scale for cost of Risk Control Options		
Cost	Approx. Cost (in €)	
1- No direct cost	0	
2- Low cost	1 – 9,999	
3- Average cost	10,000-99,999	
4- High cost	100,000 – 1 mil	
5- Very high cost	Above 1 mil	

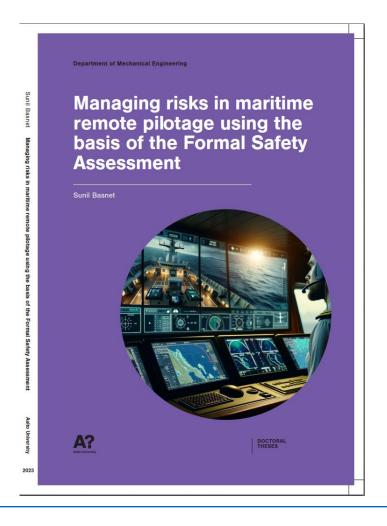
Scale for effectiveness of Risk Control Options		
Effectiveness	Reduction	
1- Very low effectiveness	1-20%	
2- Low effectiveness	20-40%	
3- Medium effectiveness	40-60%	
4- High effectiveness	60-80%	
5- Very high effectiveness	80-100%	

Cost-benefit analysis of RPO using Influence diagrams

- An Influence diagram of RPO has been developed to assist the decision-makers in the selection of Risk Control Options
- The diagram is focused on critical risk nodes and can estimate the total expected benefit by calculating the benefit due to risk reduction and the cost of implementation
- Some important measures in the selected RCO were redundancy of data collection and transmission unit, standardization of language, and requirements such as certification and minimum crew size.

Step 5 Defining the basis for the Risk and Safety Management Strategy of Remote Pilotage

Work concluded and next steps


- 50+ loss causal factors were identified in RPO risk analysis requiring risk control options.
- The risk management strategy defined with the RCOs should be used as the foundation for the definition of a structured management system to continue the design and future operations of remote pilotage in Finland
- The output of this work supports the definition of safety requirements related to remote pilotage (preliminary abstract level requirements exist already in the pilotage act)
- Remote pilotage was demonstrated in Finland in 2022. The results of this study were utilized in the demonstration.
- For the next iterations, the scope of the analysis should be expanded to a higher level (management and authorities).
- At this moment an initiative was submitted to the EU to continue the work in Finland and other EU countries

All details of the study

Please see the following D.Sc. Thesis:

https://aaltodoc.aalto.fi/server/api/core/bitstreams/88a9a04d-302c-42ce-bb06-f81fb31e5c29/content

Thank you!

Sunil

Osiris

Ahmad

Meriam

Janne

Ewelina

Sea for Value - Risks, safety and security (Research Team)

For more information please contact: Sunil Basnet (<u>sunil.basnet@aalto.fi</u>) Osiris A. Valdez Banda (<u>osiris.valdez.banda@aalto.fi</u>)